These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 27564215)

  • 21. Cold but comfortable? Application of comfort criteria to cold environments.
    Holmér I
    Indoor Air; 2004; 14 Suppl 7():27-31. PubMed ID: 15330768
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Physiological-Signal-Based Thermal Sensation Model for Indoor Environment Thermal Comfort Evaluation.
    Pao SL; Wu SY; Liang JM; Huang IJ; Guo LY; Wu WL; Liu YG; Nian SH
    Int J Environ Res Public Health; 2022 Jun; 19(12):. PubMed ID: 35742537
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling thermal sensation in a Mediterranean climate-a comparison of linear and ordinal models.
    Pantavou K; Lykoudis S
    Int J Biometeorol; 2014 Aug; 58(6):1355-68. PubMed ID: 24113737
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermal sensation and climate: a comparison of UTCI and PET thresholds in different climates.
    Pantavou K; Lykoudis S; Nikolopoulou M; Tsiros IX
    Int J Biometeorol; 2018 Sep; 62(9):1695-1708. PubMed ID: 29881902
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The relationship between bioclimatic thermal stress and subjective thermal sensation in pedestrian spaces.
    Pearlmutter D; Jiao D; Garb Y
    Int J Biometeorol; 2014 Dec; 58(10):2111-27. PubMed ID: 24648148
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessment of overall body thermal sensation based on the thermal response of local cutaneous thermoreceptors.
    Khiavi NM; Maerefat M; Zolfaghari SA
    J Therm Biol; 2019 Jul; 83():187-194. PubMed ID: 31331518
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermal comfort in environments with different vertical air temperature gradients.
    Möhlenkamp M; Schmidt M; Wesseling M; Wick A; Gores I; Müller D
    Indoor Air; 2019 Jan; 29(1):101-111. PubMed ID: 30339306
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The influence of local effects on thermal sensation under non-uniform environmental conditions--gender differences in thermophysiology, thermal comfort and productivity during convective and radiant cooling.
    Schellen L; Loomans MG; de Wit MH; Olesen BW; van Marken Lichtenbelt WD
    Physiol Behav; 2012 Sep; 107(2):252-61. PubMed ID: 22877870
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessment of human thermal perception in the hot-humid climate of Dar es Salaam, Tanzania.
    Ndetto EL; Matzarakis A
    Int J Biometeorol; 2017 Jan; 61(1):69-85. PubMed ID: 27259949
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A systematic review advocating a framework and benchmarks for assessing outdoor human thermal perception.
    Potchter O; Cohen P; Lin TP; Matzarakis A
    Sci Total Environ; 2022 Aug; 833():155128. PubMed ID: 35405233
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of thermal indices for their applicability in obstacle-resolving meteorology models.
    Fischereit J; Schlünzen KH
    Int J Biometeorol; 2018 Oct; 62(10):1887-1900. PubMed ID: 30109434
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Seasonal differences in the subjective assessment of outdoor thermal conditions and the impact of analysis techniques on the obtained results.
    Kántor N; Kovács A; Takács Á
    Int J Biometeorol; 2016 Nov; 60(11):1615-1635. PubMed ID: 27029381
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Not Available].
    Moseholm VB; Reistrup H; Rosenberg J; Fonnes S
    Ugeskr Laeger; 2023 Dec; 185(50):. PubMed ID: 38084617
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact of shade on outdoor thermal comfort-a seasonal field study in Tempe, Arizona.
    Middel A; Selover N; Hagen B; Chhetri N
    Int J Biometeorol; 2016 Dec; 60(12):1849-1861. PubMed ID: 27192997
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Machine learning and features for the prediction of thermal sensation and comfort using data from field surveys in Cyprus.
    Pantavou K; Delibasis KK; Nikolopoulos GK
    Int J Biometeorol; 2022 Oct; 66(10):1973-1984. PubMed ID: 35895145
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Air movement--good or bad?
    Toftum J
    Indoor Air; 2004; 14 Suppl 7():40-5. PubMed ID: 15330770
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Outdoor comfort study in Rio de Janeiro: site-related context effects on reported thermal sensation.
    Krüger E; Drach P; Broede P
    Int J Biometeorol; 2017 Mar; 61(3):463-475. PubMed ID: 27568191
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimal bus temperature for thermal comfort during a cool day.
    Velt KB; Daanen HAM
    Appl Ergon; 2017 Jul; 62():72-76. PubMed ID: 28411740
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Human thermal physiological and psychological responses under different heating environments.
    Wang Z; Ning H; Ji Y; Hou J; He Y
    J Therm Biol; 2015 Aug; 52():177-86. PubMed ID: 26267512
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Native influences on the construction of thermal sensation scales.
    Pantavou K; Koletsis I; Lykoudis S; Melas E; Nikolopoulou M; Tsiros IX
    Int J Biometeorol; 2020 Sep; 64(9):1497-1508. PubMed ID: 32399679
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.