These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 27564463)
1. Ambivalent Effect of Thermal Reduction in Mass Rejection through Graphene Oxide Membrane. Jang JH; Woo JY; Lee J; Han CS Environ Sci Technol; 2016 Sep; 50(18):10024-30. PubMed ID: 27564463 [TBL] [Abstract][Full Text] [Related]
2. Modulation of cation trans-membrane transport in GO-MoS Sun J; Chen Y; Hu C; Liu H; Qu J Chemosphere; 2019 May; 222():156-164. PubMed ID: 30703655 [TBL] [Abstract][Full Text] [Related]
3. Amino Acid Cross-Linked Graphene Oxide Membranes for Metal Ions Permeation, Insertion and Antibacterial Properties. Qian L; Wang H; Yang J; Chen X; Chang X; Nan Y; He Z; Hu P; Wu W; Liu T Membranes (Basel); 2020 Oct; 10(10):. PubMed ID: 33096651 [TBL] [Abstract][Full Text] [Related]
4. Enhanced Separation Performance of Radioactive Cesium and Cobalt in Graphene Oxide Membrane via Cationic Control. Hu Z; Wang S; Yang Y; Zhou F; Liang S; Chen L Langmuir; 2022 Feb; 38(6):1995-2002. PubMed ID: 35113573 [TBL] [Abstract][Full Text] [Related]
5. Electric-Field-Induced Ionic Sieving at Planar Graphene Oxide Heterojunctions for Miniaturized Water Desalination. Wen Q; Jia P; Cao L; Li J; Quan D; Wang L; Zhang Y; Lu D; Jiang L; Guo W Adv Mater; 2020 Apr; 32(16):e1903954. PubMed ID: 32115802 [TBL] [Abstract][Full Text] [Related]
6. Free-standing graphene oxide membrane with tunable channels for efficient water pollution control. Zhao S; Zhu H; Wang H; Rassu P; Wang Z; Song P; Rao D J Hazard Mater; 2019 Mar; 366():659-668. PubMed ID: 30580140 [TBL] [Abstract][Full Text] [Related]
7. GO-Based Membranes for Desalination. Ge R; Huo T; Gao Z; Li J; Zhan X Membranes (Basel); 2023 Feb; 13(2):. PubMed ID: 36837724 [TBL] [Abstract][Full Text] [Related]
8. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Chen L; Shi G; Shen J; Peng B; Zhang B; Wang Y; Bian F; Wang J; Li D; Qian Z; Xu G; Liu G; Zeng J; Zhang L; Yang Y; Zhou G; Wu M; Jin W; Li J; Fang H Nature; 2017 Oct; 550(7676):380-383. PubMed ID: 28992630 [TBL] [Abstract][Full Text] [Related]
9. Regulating the Interlayer Spacing of Graphene Oxide Membranes and Enhancing their Stability by Use of PACl. Liu T; Tian L; Graham N; Yang B; Yu W; Sun K Environ Sci Technol; 2019 Oct; 53(20):11949-11959. PubMed ID: 31538767 [TBL] [Abstract][Full Text] [Related]
10. Rightsizing Nanochannels in Reduced Graphene Oxide Membranes by Solvating for Dye Desalination. Huang L; Huang S; Venna SR; Lin H Environ Sci Technol; 2018 Nov; 52(21):12649-12655. PubMed ID: 30257090 [TBL] [Abstract][Full Text] [Related]
11. Enhanced Ion Sieving of Graphene Oxide Membranes via Surface Amine Functionalization. Qian Y; Shang J; Liu D; Yang G; Wang X; Chen C; Kou L; Lei W J Am Chem Soc; 2021 Apr; 143(13):5080-5090. PubMed ID: 33759520 [TBL] [Abstract][Full Text] [Related]
12. Revealing the role of interlayer spacing in radioactive-ion sieving of functionalized graphene membranes. Mao C; Shao H; Huang C; Chen L; Ma L; Ren Y; Tu M; Wang H; Gu J; Ma H; Xu G J Hazard Mater; 2024 Aug; 475():134795. PubMed ID: 38878427 [TBL] [Abstract][Full Text] [Related]
13. Precise control of the interlayer spacing between graphene sheets by hydrated cations. Yang Y; Mu L; Chen L; Shi G; Fang H Phys Chem Chem Phys; 2019 Apr; 21(14):7623-7629. PubMed ID: 30907908 [TBL] [Abstract][Full Text] [Related]
14. Membrane of Functionalized Reduced Graphene Oxide Nanoplates with Angstrom-Level Channels. Lee B; Li K; Yoon HS; Yoon J; Mok Y; Lee Y; Lee HH; Kim YH Sci Rep; 2016 Jun; 6():28052. PubMed ID: 27306853 [TBL] [Abstract][Full Text] [Related]
15. Tunable sieving of ions using graphene oxide membranes. Abraham J; Vasu KS; Williams CD; Gopinadhan K; Su Y; Cherian CT; Dix J; Prestat E; Haigh SJ; Grigorieva IV; Carbone P; Geim AK; Nair RR Nat Nanotechnol; 2017 Jul; 12(6):546-550. PubMed ID: 28369049 [TBL] [Abstract][Full Text] [Related]
16. Discrimination of Xylene Isomers by Precisely Tuning the Interlayer Spacing of Reduced Graphene Oxide Membrane. Alemayehu HG; Hou J; Qureshi AA; Yao Y; Sun Z; Yan M; Wang C; Liu L; Tang Z; Li L ACS Nano; 2024 Jul; 18(28):18673-18682. PubMed ID: 38951732 [TBL] [Abstract][Full Text] [Related]
17. Graphene-Based Membranes for Molecular Separation. Huang L; Zhang M; Li C; Shi G J Phys Chem Lett; 2015 Jul; 6(14):2806-15. PubMed ID: 26266866 [TBL] [Abstract][Full Text] [Related]
18. Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation. Yang Q; Su Y; Chi C; Cherian CT; Huang K; Kravets VG; Wang FC; Zhang JC; Pratt A; Grigorenko AN; Guinea F; Geim AK; Nair RR Nat Mater; 2017 Dec; 16(12):1198-1202. PubMed ID: 29170556 [TBL] [Abstract][Full Text] [Related]
19. Ultrahigh water permeance of a reduced graphene oxide nanofiltration membrane for multivalent metal ion rejection. Dai F; Yu R; Yi R; Lan J; Yang R; Wang Z; Chen J; Chen L Chem Commun (Camb); 2020 Dec; 56(95):15068-15071. PubMed ID: 33200760 [TBL] [Abstract][Full Text] [Related]
20. Selective Proton Transport for Hydrogen Production Using Graphene Oxide Membranes. Madauß L; Foller T; Plaß J; Kumar PV; Musso T; Dunkhorst K; Joshi R; Schleberger M J Phys Chem Lett; 2020 Nov; 11(21):9415-9420. PubMed ID: 33104361 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]