These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 27564644)

  • 1. Hierarchical Self-Assembly of Cellulose Nanocrystals in a Confined Geometry.
    Parker RM; Frka-Petesic B; Guidetti G; Kamita G; Consani G; Abell C; Vignolini S
    ACS Nano; 2016 Sep; 10(9):8443-9. PubMed ID: 27564644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Self-Assembly of Cellulose Nanocrystals: Hierarchical Design of Visual Appearance.
    Parker RM; Guidetti G; Williams CA; Zhao T; Narkevicius A; Vignolini S; Frka-Petesic B
    Adv Mater; 2018 May; 30(19):e1704477. PubMed ID: 29250832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colloidal cholesteric liquid crystal in spherical confinement.
    Li Y; Jun-Yan Suen J; Prince E; Larin EM; Klinkova A; Thérien-Aubin H; Zhu S; Yang B; Helmy AS; Lavrentovich OD; Kumacheva E
    Nat Commun; 2016 Aug; 7():12520. PubMed ID: 27561545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Confined self-assembly of cellulose nanocrystals in a shrinking droplet.
    Jativa F; Schütz C; Bergström L; Zhang X; Wicklein B
    Soft Matter; 2015 Jul; 11(26):5374-80. PubMed ID: 26059700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Color from hierarchy: Diverse optical properties of micron-sized spherical colloidal assemblies.
    Vogel N; Utech S; England GT; Shirman T; Phillips KR; Koay N; Burgess IB; Kolle M; Weitz DA; Aizenberg J
    Proc Natl Acad Sci U S A; 2015 Sep; 112(35):10845-50. PubMed ID: 26290583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chiral self-assembly of cellulose nanocrystals is driven by crystallite bundles.
    Parton TG; Parker RM; van de Kerkhof GT; Narkevicius A; Haataja JS; Frka-Petesic B; Vignolini S
    Nat Commun; 2022 May; 13(1):2657. PubMed ID: 35550506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Color from Cellulose Nanocrystals or Chitin Nanocrystals: Self-Assembly, Optics, and Applications.
    Frka-Petesic B; Parton TG; Honorato-Rios C; Narkevicius A; Ballu K; Shen Q; Lu Z; Ogawa Y; Haataja JS; Droguet BE; Parker RM; Vignolini S
    Chem Rev; 2023 Dec; 123(23):12595-12756. PubMed ID: 38011110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study across scales to unveil microstructural regimes in the multivalent metal driven self-assembly of cellulose nanocrystals.
    Gabrielli V; Ferrarini A; Frasconi M
    Nanoscale; 2023 Aug; 15(32):13384-13392. PubMed ID: 37531168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchical self-assembly of suspended branched colloidal nanocrystals into superlattice structures.
    Miszta K; de Graaf J; Bertoni G; Dorfs D; Brescia R; Marras S; Ceseracciu L; Cingolani R; van Roij R; Dijkstra M; Manna L
    Nat Mater; 2011 Sep; 10(11):872-6. PubMed ID: 21946613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling the Photonic Properties of Cholesteric Cellulose Nanocrystal Films with Magnets.
    Frka-Petesic B; Guidetti G; Kamita G; Vignolini S
    Adv Mater; 2017 Aug; 29(32):. PubMed ID: 28635143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-Assembled Ring-Based Complex Colloidal Particles by Lock-And-Key Interaction and Their Self-Assembly into Unusual Colloidal Crystals.
    Wang L; Liu B
    Langmuir; 2024 Apr; 40(17):9205-9214. PubMed ID: 38629303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellulose photonic pigments.
    Parker RM; Zhao TH; Frka-Petesic B; Vignolini S
    Nat Commun; 2022 Jun; 13(1):3378. PubMed ID: 35697688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional Materials from Nanocellulose: Utilizing Structure-Property Relationships in Bottom-Up Fabrication.
    De France K; Zeng Z; Wu T; Nyström G
    Adv Mater; 2021 Jul; 33(28):e2000657. PubMed ID: 32267033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-scale production of chiral nematic microspheres.
    Jiaqi Y; Zhixiang W; Sirui C; Qiongya L; Yi Q; Hao W; Yuxiao H; Zhang F; Qing G
    Chem Commun (Camb); 2024 May; 60(45):5856-5859. PubMed ID: 38752695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellulose Nanocrystal Liquid Crystal Phases: Progress and Challenges in Characterization Using Rheology Coupled to Optics, Scattering, and Spectroscopy.
    Kádár R; Spirk S; Nypelö T
    ACS Nano; 2021 May; 15(5):7931-7945. PubMed ID: 33756078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploiting Supramolecular Interactions from Polymeric Colloids for Strong Anisotropic Adhesion between Solid Surfaces.
    Tardy BL; Richardson JJ; Greca LG; Guo J; Ejima H; Rojas OJ
    Adv Mater; 2020 Apr; 32(14):e1906886. PubMed ID: 32064702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Clusters: Nanoscale Building Blocks for Solid-State Materials.
    Pinkard A; Champsaur AM; Roy X
    Acc Chem Res; 2018 Apr; 51(4):919-929. PubMed ID: 29605996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiscale hierarchical structures from a nanocluster mesophase.
    Han H; Kallakuri S; Yao Y; Williamson CB; Nevers DR; Savitzky BH; Skye RS; Xu M; Voznyy O; Dshemuchadse J; Kourkoutis LF; Weinstein SJ; Hanrath T; Robinson RD
    Nat Mater; 2022 May; 21(5):518-525. PubMed ID: 35422509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembly of colloidal one-dimensional nanocrystals.
    Zhang SY; Regulacio MD; Han MY
    Chem Soc Rev; 2014 Apr; 43(7):2301-23. PubMed ID: 24413386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Recognition in the Colloidal World.
    Elacqua E; Zheng X; Shillingford C; Liu M; Weck M
    Acc Chem Res; 2017 Nov; 50(11):2756-2766. PubMed ID: 28984441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.