These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 27564644)

  • 21. Hierarchical supramolecular spinning of nanofibers in a microfluidic channel: tuning nanostructures at a dynamic interface.
    Numata M; Takigami Y; Takayama M; Kozawa T; Hirose N
    Chemistry; 2012 Oct; 18(41):13008-17. PubMed ID: 22945551
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-Assembling Halloysite Nanotubes into Concentric Ring Patterns in a Sphere-on-Flat Geometry.
    Liu M; Huo Z; Liu T; Shen Y; He R; Zhou C
    Langmuir; 2017 Mar; 33(12):3088-3098. PubMed ID: 28025883
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assembly of cellulose nanocrystals in a levitating drop probed by time-resolved small angle X-ray scattering.
    Liu Y; Agthe M; Salajková M; Gordeyeva K; Guccini V; Fall A; Salazar-Alvarez G; Schütz C; Bergström L
    Nanoscale; 2018 Oct; 10(38):18113-18118. PubMed ID: 30238947
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Colloidal branched semiconductor nanocrystals: state of the art and perspectives.
    Li H; Kanaras AG; Manna L
    Acc Chem Res; 2013 Jul; 46(7):1387-96. PubMed ID: 23369428
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hierarchical self-assembly of polydisperse colloidal bananas into a two-dimensional vortex phase.
    Fernández-Rico C; Dullens RPA
    Proc Natl Acad Sci U S A; 2021 Aug; 118(33):. PubMed ID: 34389681
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Morphology-controlled self-assembly and synthesis of photocatalytic nanocrystals.
    Zhong Y; Wang J; Zhang R; Wei W; Wang H; Lü X; Bai F; Wu H; Haddad R; Fan H
    Nano Lett; 2014 Dec; 14(12):7175-9. PubMed ID: 25365754
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Self-assembly of emulsion droplets through programmable folding.
    McMullen A; Muñoz Basagoiti M; Zeravcic Z; Brujic J
    Nature; 2022 Oct; 610(7932):502-506. PubMed ID: 36171292
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanofibrils in nature and materials engineering.
    Ling S; Kaplan DL; Buehler MJ
    Nat Rev Mater; 2018 Apr; 3(4):. PubMed ID: 34168896
    [TBL] [Abstract][Full Text] [Related]  

  • 29. All-Aqueous Liquid Crystal Nanocellulose Emulsions with Permeable Interfacial Assembly.
    Bai L; Huan S; Zhao B; Zhu Y; Esquena J; Chen F; Gao G; Zussman E; Chu G; Rojas OJ
    ACS Nano; 2020 Oct; 14(10):13380-13390. PubMed ID: 32946222
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Construction of Stimuli-Responsive Functional Materials via Hierarchical Self-Assembly Involving Coordination Interactions.
    Chen LJ; Yang HB
    Acc Chem Res; 2018 Nov; 51(11):2699-2710. PubMed ID: 30285407
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanoparticle-laden droplets of liquid crystals: Interactive morphogenesis and dynamic assembly.
    Li Y; Khuu N; Prince E; Alizadehgiashi M; Galati E; Lavrentovich OD; Kumacheva E
    Sci Adv; 2019 Jul; 5(7):eaav1035. PubMed ID: 31281879
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The angular optical response of cellulose nanocrystal films explained by the distortion of the arrested suspension upon drying.
    Frka-Petesic B; Kamita G; Guidetti G; Vignolini S
    Phys Rev Mater; 2019 Apr; 3(4):. PubMed ID: 33225202
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatially Ordered Arrays of Colloidal Inorganic Metal Halide Perovskite Nanocrystals via Controlled Droplet Evaporation in a Confined Geometry.
    Lee K; Moon J; Jeong J; Hong SW
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832226
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Relaxation dynamics in bio-colloidal cholesteric liquid crystals confined to cylindrical geometry.
    Khadem SA; Bagnani M; Mezzenga R; Rey AD
    Nat Commun; 2020 Sep; 11(1):4616. PubMed ID: 32934229
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Programming Hierarchical Self-Assembly of Patchy Particles into Colloidal Crystals via Colloidal Molecules.
    Morphew D; Shaw J; Avins C; Chakrabarti D
    ACS Nano; 2018 Mar; 12(3):2355-2364. PubMed ID: 29457457
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Supramolecular Engineering of Hierarchically Self-Assembled, Bioinspired, Cholesteric Nanocomposites Formed by Cellulose Nanocrystals and Polymers.
    Zhu B; Merindol R; Benitez AJ; Wang B; Walther A
    ACS Appl Mater Interfaces; 2016 May; 8(17):11031-40. PubMed ID: 27067311
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electron microdiffraction reveals the nanoscale twist geometry of cellulose nanocrystals.
    Ogawa Y
    Nanoscale; 2019 Nov; 11(45):21767-21774. PubMed ID: 31573012
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure and transformation of tactoids in cellulose nanocrystal suspensions.
    Wang PX; Hamad WY; MacLachlan MJ
    Nat Commun; 2016 May; 7():11515. PubMed ID: 27143197
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hierarchical Materials Design by Pattern Transfer Printing of Self-Assembled Binary Nanocrystal Superlattices.
    Paik T; Yun H; Fleury B; Hong SH; Jo PS; Wu Y; Oh SJ; Cargnello M; Yang H; Murray CB; Kagan CR
    Nano Lett; 2017 Mar; 17(3):1387-1394. PubMed ID: 28146634
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.