BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

445 related articles for article (PubMed ID: 27564839)

  • 21. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Probing the Complexities of Structural Changes in Layered Oxide Cathode Materials for Li-Ion Batteries during Fast Charge-Discharge Cycling and Heating.
    Hu E; Wang X; Yu X; Yang XQ
    Acc Chem Res; 2018 Feb; 51(2):290-298. PubMed ID: 29350034
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Two-Dimensional π-Conjugated Frameworks as a Model System to Unveil a Multielectron-Transfer-Based Energy Storage Mechanism.
    Sakaushi K; Nishihara H
    Acc Chem Res; 2021 Aug; 54(15):3003-3015. PubMed ID: 33998232
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrochemical (de)lithiation of silver ferrite and composites: mechanistic insights from ex situ, in situ, and operando X-ray techniques.
    Durham JL; Brady AB; Cama CA; Bock DC; Pelliccione CJ; Zhang Q; Ge M; Li YR; Zhang Y; Yan H; Huang X; Chu Y; Takeuchi ES; Takeuchi KJ; Marschilok AC
    Phys Chem Chem Phys; 2017 Aug; 19(33):22329-22343. PubMed ID: 28805218
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Discovery of abnormal lithium-storage sites in molybdenum dioxide electrodes.
    Shon JK; Lee HS; Park GO; Yoon J; Park E; Park GS; Kong SS; Jin M; Choi JM; Chang H; Doo S; Kim JM; Yoon WS; Pak C; Kim H; Stucky GD
    Nat Commun; 2016 Mar; 7():11049. PubMed ID: 27001935
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrochemically oxidized electronic and ionic conducting nanostructured block copolymers for lithium battery electrodes.
    Patel SN; Javier AE; Balsara NP
    ACS Nano; 2013 Jul; 7(7):6056-68. PubMed ID: 23789816
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hierarchically Structured Core-Shell Design of a Lithium Transition-Metal Oxide Cathode Material for Excellent Electrochemical Performance.
    Shim JH; Kim YH; Yoon HS; Kim HA; Kim JS; Kim J; Cho NH; Kim YM; Lee S
    ACS Appl Mater Interfaces; 2019 Jan; 11(4):4017-4027. PubMed ID: 30607937
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells.
    Blanc F; Leskes M; Grey CP
    Acc Chem Res; 2013 Sep; 46(9):1952-63. PubMed ID: 24041242
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microscopic Behavior of Active Materials Inside a TCNQ-Based Lithium-Ion Rechargeable Battery by in Situ 2D ESR Measurements.
    Kanzaki Y; Mitani S; Shiomi D; Morita Y; Takui T; Sato K
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):43631-43640. PubMed ID: 30461254
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synchrotron X-ray Analytical Techniques for Studying Materials Electrochemistry in Rechargeable Batteries.
    Lin F; Liu Y; Yu X; Cheng L; Singer A; Shpyrko OG; Xin HL; Tamura N; Tian C; Weng TC; Yang XQ; Meng YS; Nordlund D; Yang W; Doeff MM
    Chem Rev; 2017 Nov; 117(21):13123-13186. PubMed ID: 28960962
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design and Tuning of the Electrochemical Properties of Vanadium-Based Cation-Disordered Rock-Salt Oxide Positive Electrode Material for Lithium-Ion Batteries.
    Cambaz MA; Vinayan BP; Euchner H; Pervez SA; Geßwein H; Braun T; Gross A; Fichtner M
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):39848-39858. PubMed ID: 31589014
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Something from nothing: enhancing electrochemical charge storage with cation vacancies.
    Hahn BP; Long JW; Rolison DR
    Acc Chem Res; 2013 May; 46(5):1181-91. PubMed ID: 22642490
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo(1/3)Ni(1/3)Mn(1/3)O2.
    Yabuuchi N; Yoshii K; Myung ST; Nakai I; Komaba S
    J Am Chem Soc; 2011 Mar; 133(12):4404-19. PubMed ID: 21375288
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of cation mixing controlled by thermal treatment duration on the electrochemical stability of lithium transition-metal oxides.
    Sun G; Yin X; Yang W; Song A; Jia C; Yang W; Du Q; Ma Z; Shao G
    Phys Chem Chem Phys; 2017 Nov; 19(44):29886-29894. PubMed ID: 29086786
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular Orbital Principles of Oxygen-Redox Battery Electrodes.
    Okubo M; Yamada A
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):36463-36472. PubMed ID: 29016101
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Roles of surface chemistry on safety and electrochemistry in lithium ion batteries.
    Lee KT; Jeong S; Cho J
    Acc Chem Res; 2013 May; 46(5):1161-70. PubMed ID: 22509931
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lithium- and Magnesium-Storage Mechanisms of Novel Hexagonal NbSe
    Peng C; Lyu H; Wu L; Xiong T; Xiong F; Liu Z; An Q; Mai L
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):36988-36995. PubMed ID: 30299077
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrochemical Performance and Storage Mechanism of Ag
    Zhang M; Gao Y; Chen N; Ge X; Chen H; Wei Y; Du F; Chen G; Wang C
    Chemistry; 2017 Apr; 23(21):5148-5153. PubMed ID: 28244150
    [TBL] [Abstract][Full Text] [Related]  

  • 39. X-ray absorption spectroscopy study of the LixFePO4 cathode during cycling using a novel electrochemical in situ reaction cell.
    Deb A; Bergmann U; Cairns EJ; Cramer SP
    J Synchrotron Radiat; 2004 Nov; 11(Pt 6):497-504. PubMed ID: 15496738
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design of Nickel-Based Cation-Disordered Rock-Salt Oxides: The Effect of Transition Metal (M = V, Ti, Zr) Substitution in LiNi
    Cambaz MA; Vinayan BP; Euchner H; Johnsen RE; Guda AA; Mazilkin A; Rusalev YV; Trigub AL; Gross A; Fichtner M
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):21957-21964. PubMed ID: 29863834
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.