These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 27565143)
1. Imaging of the Staphylococcus aureus Inactivation Process Induced by a Multigas Plasma Jet. Takamatsu T; Kawano H; Sasaki Y; Uehara K; Miyahara H; Matsumura Y; Iwasawa A; Azuma T; Okino A Curr Microbiol; 2016 Dec; 73(6):766-772. PubMed ID: 27565143 [TBL] [Abstract][Full Text] [Related]
2. Microbial Inactivation in the Liquid Phase Induced by Multigas Plasma Jet. Takamatsu T; Uehara K; Sasaki Y; Hidekazu M; Matsumura Y; Iwasawa A; Ito N; Kohno M; Azuma T; Okino A PLoS One; 2015; 10(7):e0132381. PubMed ID: 26173107 [TBL] [Abstract][Full Text] [Related]
3. Antimicrobial mechanism and the effect of atmospheric pressure N Wang J; Yu Z; Xu Z; Hu S; Li Y; Xue X; Cai Q; Zhou X; Shen J; Lan Y; Cheng C Biofouling; 2018 Sep; 34(8):935-949. PubMed ID: 30477343 [TBL] [Abstract][Full Text] [Related]
4. In vitro antimicrobial effects and mechanisms of direct current air-liquid discharge plasma on planktonic Staphylococcus aureus and Escherichia coli in liquids. Xu Z; Cheng C; Shen J; Lan Y; Hu S; Han W; Chu PK Bioelectrochemistry; 2018 Jun; 121():125-134. PubMed ID: 29413862 [TBL] [Abstract][Full Text] [Related]
5. Long-lived and short-lived reactive species produced by a cold atmospheric pressure plasma jet for the inactivation of Pseudomonas aeruginosa and Staphylococcus aureus. Kondeti VSSK; Phan CQ; Wende K; Jablonowski H; Gangal U; Granick JL; Hunter RC; Bruggeman PJ Free Radic Biol Med; 2018 Aug; 124():275-287. PubMed ID: 29864482 [TBL] [Abstract][Full Text] [Related]
6. Inactivation of Mycobacteria by Radicals from Non-Thermal Plasma Jet. Lee C; Subhadra B; Choi HG; Suh HW; Uhm HS; Kim HJ J Microbiol Biotechnol; 2019 Sep; 29(9):1401-1411. PubMed ID: 31434362 [TBL] [Abstract][Full Text] [Related]
7. Mechanisms of Inactivation by High-Voltage Atmospheric Cold Plasma Differ for Escherichia coli and Staphylococcus aureus. Han L; Patil S; Boehm D; Milosavljević V; Cullen PJ; Bourke P Appl Environ Microbiol; 2016 Jan; 82(2):450-8. PubMed ID: 26519396 [TBL] [Abstract][Full Text] [Related]
8. Differences in cellular damage induced by dielectric barrier discharge plasma between Salmonella Typhimurium and Staphylococcus aureus. Huang M; Zhuang H; Zhao J; Wang J; Yan W; Zhang J Bioelectrochemistry; 2020 Apr; 132():107445. PubMed ID: 31918057 [TBL] [Abstract][Full Text] [Related]
9. Non-thermal plasma-activated water inactivation of food-borne pathogen on fresh produce. Ma R; Wang G; Tian Y; Wang K; Zhang J; Fang J J Hazard Mater; 2015 Dec; 300():643-651. PubMed ID: 26282219 [TBL] [Abstract][Full Text] [Related]
10. Direct and Indirect Bactericidal Effects of Cold Atmospheric-Pressure Microplasma and Plasma Jet. Yahaya AG; Okuyama T; Kristof J; Blajan MG; Shimizu K Molecules; 2021 Apr; 26(9):. PubMed ID: 33925959 [TBL] [Abstract][Full Text] [Related]
11. Inactivation of Infectious Bacteria Using Nonthermal Biocompatible Plasma Cabinet Sterilizer. Akter M; Yadav DK; Ki SH; Choi EH; Han I Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33171928 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of the sensitivity of bacterial and yeast cells to cold atmospheric plasma jet treatments. Sharkey MA; Chebbi A; McDonnell KA; Staunton C; Dowling DP Biointerphases; 2015 Jun; 10(2):029507. PubMed ID: 25850415 [TBL] [Abstract][Full Text] [Related]
13. Elucidating the bacterial inactivation mechanism by argon cold atmospheric pressure plasma jet through spectroscopic and imaging techniques. Das S; Mohapatra S; Kar S J Appl Microbiol; 2024 Sep; 135(9):. PubMed ID: 39264067 [TBL] [Abstract][Full Text] [Related]
14. Spatial Dependence of DNA Damage in Bacteria due to Low-Temperature Plasma Application as Assessed at the Single Cell Level. Privat-Maldonado A; O'Connell D; Welch E; Vann R; van der Woude MW Sci Rep; 2016 Oct; 6():35646. PubMed ID: 27759098 [TBL] [Abstract][Full Text] [Related]
15. Membrane damage and active but nonculturable state in liquid cultures of Escherichia coli treated with an atmospheric pressure plasma jet. Dolezalova E; Lukes P Bioelectrochemistry; 2015 Jun; 103():7-14. PubMed ID: 25212700 [TBL] [Abstract][Full Text] [Related]
16. Influence of Gas Temperature in Atmospheric Non-Equilibrium Plasma on Bactericidal Effect. Kawano H; Takamatsu T; Matsumura Y; Miyahara H; Iwasawa A; Okino A Biocontrol Sci; 2018; 23(4):167-175. PubMed ID: 30584203 [TBL] [Abstract][Full Text] [Related]
17. Effective bacterial inactivation using low temperature radio frequency plasma. Sureshkumar A; Sankar R; Mandal M; Neogi S Int J Pharm; 2010 Aug; 396(1-2):17-22. PubMed ID: 20609423 [TBL] [Abstract][Full Text] [Related]
18. Oxidative modification and electrochemical inactivation of Escherichia coli upon cold atmospheric pressure plasma exposure. Dezest M; Bulteau AL; Quinton D; Chavatte L; Le Bechec M; Cambus JP; Arbault S; Nègre-Salvayre A; Clément F; Cousty S PLoS One; 2017; 12(3):e0173618. PubMed ID: 28358809 [TBL] [Abstract][Full Text] [Related]
19. Morphology analysis of Escherichia coli treated with nonthermal plasma. Guo J; Li Z; Huang K; Li Y; Wang J J Appl Microbiol; 2017 Jan; 122(1):87-96. PubMed ID: 27792254 [TBL] [Abstract][Full Text] [Related]
20. The inactivation of Staphylococcus aureus biofilms using low-power argon plasma in a layer-by-layer approach. Traba C; Liang JF Biofouling; 2015; 31(1):39-48. PubMed ID: 25569189 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]