BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 27565584)

  • 1. A likelihood ratio-based method to predict exact pedigrees for complex families from next-generation sequencing data.
    Heinrich V; Kamphans T; Mundlos S; Robinson PN; Krawitz PM
    Bioinformatics; 2017 Jan; 33(1):72-78. PubMed ID: 27565584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Canvas SPW: calling de novo copy number variants in pedigrees.
    Ivakhno S; Roller E; Colombo C; Tedder P; Cox AJ
    Bioinformatics; 2018 Feb; 34(3):516-518. PubMed ID: 29028893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Joint variant and de novo mutation identification on pedigrees from high-throughput sequencing data.
    Cleary JG; Braithwaite R; Gaastra K; Hilbush BS; Inglis S; Irvine SA; Jackson A; Littin R; Nohzadeh-Malakshah S; Rathod M; Ware D; Trigg L; De La Vega FM
    J Comput Biol; 2014 Jun; 21(6):405-19. PubMed ID: 24874280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Olorin: combining gene flow with exome sequencing in large family studies of complex disease.
    Morris JA; Barrett JC
    Bioinformatics; 2012 Dec; 28(24):3320-1. PubMed ID: 23052039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FamSeq: a variant calling program for family-based sequencing data using graphics processing units.
    Peng G; Fan Y; Wang W
    PLoS Comput Biol; 2014 Oct; 10(10):e1003880. PubMed ID: 25357123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exome-based mapping and variant prioritization for inherited Mendelian disorders.
    Koboldt DC; Larson DE; Sullivan LS; Bowne SJ; Steinberg KM; Churchill JD; Buhr AC; Nutter N; Pierce EA; Blanton SH; Weinstock GM; Wilson RK; Daiger SP
    Am J Hum Genet; 2014 Mar; 94(3):373-84. PubMed ID: 24560519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Consensus Genotyper for Exome Sequencing (CGES): improving the quality of exome variant genotypes.
    Trubetskoy V; Rodriguez A; Dave U; Campbell N; Crawford EL; Cook EH; Sutcliffe JS; Foster I; Madduri R; Cox NJ; Davis LK
    Bioinformatics; 2015 Jan; 31(2):187-93. PubMed ID: 25270638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. myVCF: a desktop application for high-throughput mutations data management.
    Pietrelli A; Valenti L
    Bioinformatics; 2017 Nov; 33(22):3676-3678. PubMed ID: 29036298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data.
    Okonechnikov K; Conesa A; García-Alcalde F
    Bioinformatics; 2016 Jan; 32(2):292-4. PubMed ID: 26428292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A reference data set of 5.4 million phased human variants validated by genetic inheritance from sequencing a three-generation 17-member pedigree.
    Eberle MA; Fritzilas E; Krusche P; Källberg M; Moore BL; Bekritsky MA; Iqbal Z; Chuang HY; Humphray SJ; Halpern AL; Kruglyak S; Margulies EH; McVean G; Bentley DR
    Genome Res; 2017 Jan; 27(1):157-164. PubMed ID: 27903644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Filtering for compound heterozygous sequence variants in non-consanguineous pedigrees.
    Kamphans T; Sabri P; Zhu N; Heinrich V; Mundlos S; Robinson PN; Parkhomchuk D; Krawitz PM
    PLoS One; 2013; 8(8):e70151. PubMed ID: 23940540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PedMiner: a tool for linkage analysis-based identification of disease-associated variants using family based whole-exome sequencing data.
    Zhou J; Gao J; Zhang H; Zhao D; Li A; Iqbal F; Shi Q; Zhang Y
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32393981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery and genotyping of novel sequence insertions in many sequenced individuals.
    Kavak P; Lin YY; Numanagic I; Asghari H; Güngör T; Alkan C; Hach F
    Bioinformatics; 2017 Jul; 33(14):i161-i169. PubMed ID: 28881988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inferring rare disease risk variants based on exact probabilities of sharing by multiple affected relatives.
    Bureau A; Younkin SG; Parker MM; Bailey-Wilson JE; Marazita ML; Murray JC; Mangold E; Albacha-Hejazi H; Beaty TH; Ruczinski I
    Bioinformatics; 2014 Aug; 30(15):2189-96. PubMed ID: 24740360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MendelProb: probability and sample size calculations for Mendelian studies of exome and whole genome sequence data.
    He Z; Wang L; DeWan AT; Leal SM
    Bioinformatics; 2019 Feb; 35(3):529-531. PubMed ID: 30032240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ReliableGenome: annotation of genomic regions with high/low variant calling concordance.
    Popitsch N; ; Schuh A; Taylor JC
    Bioinformatics; 2017 Jan; 33(2):155-160. PubMed ID: 27605105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A space and time-efficient index for the compacted colored de Bruijn graph.
    Almodaresi F; Sarkar H; Srivastava A; Patro R
    Bioinformatics; 2018 Jul; 34(13):i169-i177. PubMed ID: 29949982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disease gene identification strategies for exome sequencing.
    Gilissen C; Hoischen A; Brunner HG; Veltman JA
    Eur J Hum Genet; 2012 May; 20(5):490-7. PubMed ID: 22258526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exome sequencing covers >98% of mutations identified on targeted next generation sequencing panels.
    LaDuca H; Farwell KD; Vuong H; Lu HM; Mu W; Shahmirzadi L; Tang S; Chen J; Bhide S; Chao EC
    PLoS One; 2017; 12(2):e0170843. PubMed ID: 28152038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design considerations for genetic linkage and association studies.
    Nsengimana J; Bishop DT
    Methods Mol Biol; 2012; 850():237-62. PubMed ID: 22307702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.