These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 27566147)

  • 1. Evoking picomolar binding in RNA by a single phosphorodithioate linkage.
    Abeydeera ND; Egli M; Cox N; Mercier K; Conde JN; Pallan PS; Mizurini DM; Sierant M; Hibti FE; Hassell T; Wang T; Liu FW; Liu HM; Martinez C; Sood AK; Lybrand TP; Frydman C; Monteiro RQ; Gomer RH; Nawrot B; Yang X
    Nucleic Acids Res; 2016 Sep; 44(17):8052-64. PubMed ID: 27566147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced Dispersion and Polarization Interactions Achieved through Dithiophosphate Group Incorporation Yield a Dramatic Binding Affinity Increase for an RNA Aptamer-Thrombin Complex.
    Egli M; Lybrand TP
    J Am Chem Soc; 2019 Mar; 141(10):4445-4452. PubMed ID: 30794399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A sensitive thrombin-linked sandwich immunoassay for protein targets using high affinity phosphorodithioate modified aptamer for thrombin labeling.
    Wang C; Sun Y; Zhao Q
    Talanta; 2020 Jan; 207():120280. PubMed ID: 31594565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporating a Thiophosphate Modification into a Common RNA Tetraloop Motif Causes an Unanticipated Stability Boost.
    Pallan PS; Lybrand TP; Schlegel MK; Harp JM; Jahns H; Manoharan M; Egli M
    Biochemistry; 2020 Dec; 59(49):4627-4637. PubMed ID: 33275419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determining Functional Aptamer-Protein Interaction by Biolayer Interferometry.
    Lou X; Egli M; Yang X
    Curr Protoc Nucleic Acid Chem; 2016 Dec; 67():7.25.1-7.25.15. PubMed ID: 27911494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solid-Phase Synthesis of RNA Analogs Containing Phosphorodithioate Linkages.
    Yang X
    Curr Protoc Nucleic Acid Chem; 2017 Sep; 70():4.77.1-4.77.13. PubMed ID: 28921494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigations on the interface of nucleic acid aptamers and binding targets.
    Cai S; Yan J; Xiong H; Liu Y; Peng D; Liu Z
    Analyst; 2018 Nov; 143(22):5317-5338. PubMed ID: 30357118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RAID3--An interleukin-6 receptor-binding aptamer with post-selective modification-resistant affinity.
    Mittelberger F; Meyer C; Waetzig GH; Zacharias M; Valentini E; Svergun DI; Berg K; Lorenzen I; Grötzinger J; Rose-John S; Hahn U
    RNA Biol; 2015; 12(9):1043-53. PubMed ID: 26383776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular affinity rulers: systematic evaluation of DNA aptamers for their applicabilities in ELISA.
    Kimoto M; Shermane Lim YW; Hirao I
    Nucleic Acids Res; 2019 Sep; 47(16):8362-8374. PubMed ID: 31392985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of an RNA aptamer bound to thrombin.
    Long SB; Long MB; White RR; Sullenger BA
    RNA; 2008 Dec; 14(12):2504-12. PubMed ID: 18971322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of aptamer-protein complexes by X-ray crystallography and alternative approaches.
    Ruigrok VJB; Levisson M; Hekelaar J; Smidt H; Dijkstra BW; Van der Oost J
    Int J Mol Sci; 2012; 13(8):10537-10552. PubMed ID: 22949878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An RNA aptamer possessing a novel monovalent cation-mediated fold inhibits lysozyme catalysis by inhibiting the binding of long natural substrates.
    Padlan CS; Malashkevich VN; Almo SC; Levy M; Brenowitz M; Girvin ME
    RNA; 2014 Apr; 20(4):447-61. PubMed ID: 24570482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solid-Phase Synthesis of Oligodeoxynucleotide Analogs Containing Phosphorodithioate Linkages.
    Yang X
    Curr Protoc Nucleic Acid Chem; 2016 Sep; 66():4.71.1-4.71.14. PubMed ID: 27584703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying the Kinetic Residence Time as a Potential Complement to Affinity for the Aptamer Selection.
    Yan Z; Wang J
    J Phys Chem B; 2018 Sep; 122(35):8380-8385. PubMed ID: 30114357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamics and kinetics of adaptive binding in the malachite green RNA aptamer.
    Da Costa JB; Andreiev AI; Dieckmann T
    Biochemistry; 2013 Sep; 52(38):6575-83. PubMed ID: 23984874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ToGo-WF: prediction of RNA tertiary structures and RNA-RNA/protein interactions using the KNIME workflow.
    Yamasaki S; Amemiya T; Yabuki Y; Horimoto K; Fukui K
    J Comput Aided Mol Des; 2019 May; 33(5):497-507. PubMed ID: 30840170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-ExSELEX stabilization of an unnatural-base DNA aptamer targeting VEGF165 toward pharmaceutical applications.
    Kimoto M; Nakamura M; Hirao I
    Nucleic Acids Res; 2016 Sep; 44(15):7487-94. PubMed ID: 27387284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Efficient screening for 8-oxoguanine DNA glycosylase binding aptamers via capillary electrophoresis].
    Han S; Zhao L; Yang G; Qu F
    Se Pu; 2021 Jul; 39(7):721-729. PubMed ID: 34227370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic and Thermodynamic Analyses of Interaction between a High-Affinity RNA Aptamer and Its Target Protein.
    Amano R; Takada K; Tanaka Y; Nakamura Y; Kawai G; Kozu T; Sakamoto T
    Biochemistry; 2016 Nov; 55(45):6221-6229. PubMed ID: 27766833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational plasticity of RNA for target recognition as revealed by the 2.15 A crystal structure of a human IgG-aptamer complex.
    Nomura Y; Sugiyama S; Sakamoto T; Miyakawa S; Adachi H; Takano K; Murakami S; Inoue T; Mori Y; Nakamura Y; Matsumura H
    Nucleic Acids Res; 2010 Nov; 38(21):7822-9. PubMed ID: 20675355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.