BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 27566148)

  • 1. Single molecule tracking of Ace1p in Saccharomyces cerevisiae defines a characteristic residence time for non-specific interactions of transcription factors with chromatin.
    Ball DA; Mehta GD; Salomon-Kent R; Mazza D; Morisaki T; Mueller F; McNally JG; Karpova TS
    Nucleic Acids Res; 2016 Dec; 44(21):e160. PubMed ID: 27566148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromatin repositioning activity and transcription machinery are both recruited by Ace1p in yeast CUP1 activation.
    Wimalarathna RN; Pan PY; Shen CH
    Biochem Biophys Res Commun; 2012 Jun; 422(4):658-63. PubMed ID: 22609398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-Molecule Analysis Reveals Linked Cycles of RSC Chromatin Remodeling and Ace1p Transcription Factor Binding in Yeast.
    Mehta GD; Ball DA; Eriksson PR; Chereji RV; Clark DJ; McNally JG; Karpova TS
    Mol Cell; 2018 Dec; 72(5):875-887.e9. PubMed ID: 30318444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A genome-wide analysis in Saccharomyces cerevisiae demonstrates the influence of chromatin modifiers on transcription.
    Steinfeld I; Shamir R; Kupiec M
    Nat Genet; 2007 Mar; 39(3):303-9. PubMed ID: 17325681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remodeling of yeast CUP1 chromatin involves activator-dependent repositioning of nucleosomes over the entire gene and flanking sequences.
    Shen CH; Leblanc BP; Alfieri JA; Clark DJ
    Mol Cell Biol; 2001 Jan; 21(2):534-47. PubMed ID: 11134341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Resolution Global Analysis of the Influences of Bas1 and Ino4 Transcription Factors on Meiotic DNA Break Distributions in Saccharomyces cerevisiae.
    Zhu X; Keeney S
    Genetics; 2015 Oct; 201(2):525-42. PubMed ID: 26245832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study of biochemical and functional interactions of Htl1p, a putative component of the Saccharomyces cerevisiae, Rsc chromatin-remodeling complex.
    Florio C; Moscariello M; Ederle S; Fasano R; Lanzuolo C; Pulitzer JF
    Gene; 2007 Jun; 395(1-2):72-85. PubMed ID: 17400406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Escherichia coli Dam methylase as a molecular tool for mapping binding sites of the yeast transcription factor Rpn4].
    Spasskaia DS; Karpov DS; Karpov VL
    Mol Biol (Mosk); 2011; 45(4):642-51. PubMed ID: 21954596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of biotin tagging in Saccharomyces cerevisiae improves the sensitivity of chromatin immunoprecipitation.
    van Werven FJ; Timmers HT
    Nucleic Acids Res; 2006 Feb; 34(4):e33. PubMed ID: 16500888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-dependent recruitment of Ino80p and Snf2p is required for yeast CUP1 activation.
    Wimalarathna RN; Pan PY; Shen CH
    Biochem Cell Biol; 2014 Feb; 92(1):69-75. PubMed ID: 24471920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Saccharomyces cerevisiae heat shock transcription factor regulates cell wall remodeling in response to heat shock.
    Imazu H; Sakurai H
    Eukaryot Cell; 2005 Jun; 4(6):1050-6. PubMed ID: 15947197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel domain of the yeast heat shock factor that regulates its activation function.
    Sakurai H; Fukasawa T
    Biochem Biophys Res Commun; 2001 Jul; 285(3):696-701. PubMed ID: 11453649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defining the Essential Function of Yeast Hsf1 Reveals a Compact Transcriptional Program for Maintaining Eukaryotic Proteostasis.
    SolĂ­s EJ; Pandey JP; Zheng X; Jin DX; Gupta PB; Airoldi EM; Pincus D; Denic V
    Mol Cell; 2016 Jul; 63(1):60-71. PubMed ID: 27320198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concurrent fast and slow cycling of a transcriptional activator at an endogenous promoter.
    Karpova TS; Kim MJ; Spriet C; Nalley K; Stasevich TJ; Kherrouche Z; Heliot L; McNally JG
    Science; 2008 Jan; 319(5862):466-9. PubMed ID: 18218898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The natural osmolyte trehalose is a positive regulator of the heat-induced activity of yeast heat shock transcription factor.
    Conlin LK; Nelson HC
    Mol Cell Biol; 2007 Feb; 27(4):1505-15. PubMed ID: 17145780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence that Spt2/Sin1, an HMG-like factor, plays roles in transcription elongation, chromatin structure, and genome stability in Saccharomyces cerevisiae.
    Nourani A; Robert F; Winston F
    Mol Cell Biol; 2006 Feb; 26(4):1496-509. PubMed ID: 16449659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A stress regulatory network for co-ordinated activation of proteasome expression mediated by yeast heat shock transcription factor.
    Hahn JS; Neef DW; Thiele DJ
    Mol Microbiol; 2006 Apr; 60(1):240-51. PubMed ID: 16556235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conservation of a stress response: human heat shock transcription factors functionally substitute for yeast HSF.
    Liu XD; Liu PC; Santoro N; Thiele DJ
    EMBO J; 1997 Nov; 16(21):6466-77. PubMed ID: 9351828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel role for Nhp6 proteins in histone gene regulation in Saccharomyces cerevisiae.
    Durano D; Lukacs A; Di Felice F; Micheli G; Camilloni G
    Int J Biochem Cell Biol; 2017 Feb; 83():76-83. PubMed ID: 28025045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On your MARKS, get SET, METHYLATE!
    Mellor J
    Nat Cell Biol; 2008 Nov; 10(11):1249-50. PubMed ID: 18978833
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.