BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

560 related articles for article (PubMed ID: 27566326)

  • 1. Does increasing the intelligibility of a competing sound source interfere more with speech comprehension in older adults than it does in younger adults?
    Lu Z; Daneman M; Schneider BA
    Atten Percept Psychophys; 2016 Nov; 78(8):2655-2677. PubMed ID: 27566326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Word recognition for temporally and spectrally distorted materials: the effects of age and hearing loss.
    Smith SL; Pichora-Fuller MK; Wilson RH; Macdonald EN
    Ear Hear; 2012; 33(3):349-66. PubMed ID: 22343546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How Spoken Language Comprehension is Achieved by Older Listeners in Difficult Listening Situations.
    Schneider BA; Avivi-Reich M; Daneman M
    Exp Aging Res; 2016; 42(1):31-49. PubMed ID: 26683040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of training on word-recognition performance in noise for young normal-hearing and older hearing-impaired listeners.
    Burk MH; Humes LE; Amos NE; Strauser LE
    Ear Hear; 2006 Jun; 27(3):263-78. PubMed ID: 16672795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How Age, Linguistic Status, and the Nature of the Auditory Scene Alter the Manner in Which Listening Comprehension Is Achieved in Multitalker Conversations.
    Avivi-Reich M; Jakubczyk A; Daneman M; Schneider BA
    J Speech Lang Hear Res; 2015 Oct; 58(5):1570-91. PubMed ID: 26161679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age-related changes in listening effort for various types of masker noises.
    Desjardins JL; Doherty KA
    Ear Hear; 2013; 34(3):261-72. PubMed ID: 23095723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Does it take older adults longer than younger adults to perceptually segregate a speech target from a background masker?
    Ben-David BM; Tse VY; Schneider BA
    Hear Res; 2012 Aug; 290(1-2):55-63. PubMed ID: 22609772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age effects on perceptual organization of speech: Contributions of glimpsing, phonemic restoration, and speech segregation.
    Bologna WJ; Vaden KI; Ahlstrom JB; Dubno JR
    J Acoust Soc Am; 2018 Jul; 144(1):267. PubMed ID: 30075693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Some factors underlying individual differences in speech recognition on PRESTO: a first report.
    Tamati TN; Gilbert JL; Pisoni DB
    J Am Acad Audiol; 2013; 24(7):616-34. PubMed ID: 24047949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of energetic and informational masking on The Words-in-Noise Test (WIN).
    Wilson RH; Trivette CP; Williams DA; Watts KL
    J Am Acad Audiol; 2012; 23(7):522-33. PubMed ID: 22992259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Impact of Age, Background Noise, Semantic Ambiguity, and Hearing Loss on Recognition Memory for Spoken Sentences.
    Koeritzer MA; Rogers CS; Van Engen KJ; Peelle JE
    J Speech Lang Hear Res; 2018 Mar; 61(3):740-751. PubMed ID: 29450493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Release from perceptual masking for children and adults: benefit of a carrier phrase.
    Bonino AY; Leibold LJ; Buss E
    Ear Hear; 2013; 34(1):3-14. PubMed ID: 22836239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Masked speech perception across the adult lifespan: Impact of age and hearing impairment.
    Goossens T; Vercammen C; Wouters J; van Wieringen A
    Hear Res; 2017 Feb; 344():109-124. PubMed ID: 27845259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Age and Working Memory Capacity on Speech Recognition Performance in Noise Among Listeners With Normal Hearing.
    Gordon-Salant S; Cole SS
    Ear Hear; 2016; 37(5):593-602. PubMed ID: 27232071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cognitive load during speech perception in noise: the influence of age, hearing loss, and cognition on the pupil response.
    Zekveld AA; Kramer SE; Festen JM
    Ear Hear; 2011; 32(4):498-510. PubMed ID: 21233711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Working memory predicts semantic comprehension in dichotic listening in older adults.
    James PJ; Krishnan S; Aydelott J
    Cognition; 2014 Oct; 133(1):32-42. PubMed ID: 24955886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for enhanced neural tracking of the speech envelope underlying age-related speech-in-noise difficulties.
    Decruy L; Vanthornhout J; Francart T
    J Neurophysiol; 2019 Aug; 122(2):601-615. PubMed ID: 31141449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of auditory temporal resolution in school-age children revealed by word recognition in continuous and interrupted noise.
    Stuart A
    Ear Hear; 2005 Feb; 26(1):78-88. PubMed ID: 15692306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aided speech-identification performance in single-talker competition by older adults with impaired hearing.
    Humes LE; Coughlin M
    Scand J Psychol; 2009 Oct; 50(5):485-94. PubMed ID: 19778396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Working memory, age, and hearing loss: susceptibility to hearing aid distortion.
    Arehart KH; Souza P; Baca R; Kates JM
    Ear Hear; 2013; 34(3):251-60. PubMed ID: 23291963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.