These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 27566334)

  • 1. Impact of exposure to mosquito transmission-blocking antibodies on Plasmodium falciparum population genetic structure.
    Sandeu MM; Abate L; Tchioffo MT; Bayibéki AN; Awono-Ambéné PH; Nsango SE; Chesnais CB; Dinglasan RR; de Meeûs T; Morlais I
    Infect Genet Evol; 2016 Nov; 45():138-144. PubMed ID: 27566334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Anopheles-midgut APN1 structure reveals a new malaria transmission-blocking vaccine epitope.
    Atkinson SC; Armistead JS; Mathias DK; Sandeu MM; Tao D; Borhani-Dizaji N; Tarimo BB; Morlais I; Dinglasan RR; Borg NA
    Nat Struct Mol Biol; 2015 Jul; 22(7):532-9. PubMed ID: 26075520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antibodies to a single, conserved epitope in Anopheles APN1 inhibit universal transmission of Plasmodium falciparum and Plasmodium vivax malaria.
    Armistead JS; Morlais I; Mathias DK; Jardim JG; Joy J; Fridman A; Finnefrock AC; Bagchi A; Plebanski M; Scorpio DG; Churcher TS; Borg NA; Sattabongkot J; Dinglasan RR
    Infect Immun; 2014 Feb; 82(2):818-29. PubMed ID: 24478095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carboxypeptidases B of Anopheles gambiae as targets for a Plasmodium falciparum transmission-blocking vaccine.
    Lavazec C; Boudin C; Lacroix R; Bonnet S; Diop A; Thiberge S; Boisson B; Tahar R; Bourgouin C
    Infect Immun; 2007 Apr; 75(4):1635-42. PubMed ID: 17283100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anti-mosquito midgut antibodies block development of Plasmodium falciparum and Plasmodium vivax in multiple species of Anopheles mosquitoes and reduce vector fecundity and survivorship.
    Lal AA; Patterson PS; Sacci JB; Vaughan JA; Paul C; Collins WE; Wirtz RA; Azad AF
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):5228-33. PubMed ID: 11309510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential roles of an Anopheline midgut GPI-anchored protein in mediating Plasmodium falciparum and Plasmodium vivax ookinete invasion.
    Mathias DK; Jardim JG; Parish LA; Armistead JS; Trinh HV; Kumpitak C; Sattabongkot J; Dinglasan RR
    Infect Genet Evol; 2014 Dec; 28():635-47. PubMed ID: 24929123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmodium falciparum ookinete expression of plasmepsin VII and plasmepsin X.
    Li F; Bounkeua V; Pettersen K; Vinetz JM
    Malar J; 2016 Feb; 15():111. PubMed ID: 26911483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative assessment of An. gambiae and An. stephensi mosquitoes to determine transmission-reducing activity of antibodies against P. falciparum sexual stage antigens.
    Eldering M; Bompard A; Miura K; Stone W; Morlais I; Cohuet A; van Gemert GJ; Brock PM; Rijpma SR; van de Vegte-Bolmer M; Graumans W; Siebelink-Stoter R; Da DF; Long CA; Morin MJ; Sauerwein RW; Churcher TS; Bousema T
    Parasit Vectors; 2017 Oct; 10(1):489. PubMed ID: 29041962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural vaccinology of malaria transmission-blocking vaccines.
    Patel PN; Tolia N
    Expert Rev Vaccines; 2021 Feb; 20(2):199-214. PubMed ID: 33430656
    [No Abstract]   [Full Text] [Related]  

  • 10. The fibrinogen-like domain of FREP1 protein is a broad-spectrum malaria transmission-blocking vaccine antigen.
    Niu G; Franc A C; Zhang G; Roobsoong W; Nguitragool W; Wang X; Prachumsri J; Butler NS; Li J
    J Biol Chem; 2017 Jul; 292(28):11960-11969. PubMed ID: 28533429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transmission-blocking activity induced by malaria vaccine candidates Pfs25/Pvs25 is a direct and predictable function of antibody titer.
    Miura K; Keister DB; Muratova OV; Sattabongkot J; Long CA; Saul A
    Malar J; 2007 Aug; 6():107. PubMed ID: 17686163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmodium falciparum mating patterns and mosquito infectivity of natural isolates of gametocytes.
    Morlais I; Nsango SE; Toussile W; Abate L; Annan Z; Tchioffo MT; Cohuet A; Awono-Ambene PH; Fontenille D; Rousset F; Berry A
    PLoS One; 2015; 10(4):e0123777. PubMed ID: 25875840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental study of the relationship between Plasmodium gametocyte density and infection success in mosquitoes; implications for the evaluation of malaria transmission-reducing interventions.
    Da DF; Churcher TS; Yerbanga RS; Yaméogo B; Sangaré I; Ouedraogo JB; Sinden RE; Blagborough AM; Cohuet A
    Exp Parasitol; 2015 Feb; 149():74-83. PubMed ID: 25541384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunity against sexual stage Plasmodium falciparum and Plasmodium vivax parasites.
    de Jong RM; Tebeje SK; Meerstein-Kessel L; Tadesse FG; Jore MM; Stone W; Bousema T
    Immunol Rev; 2020 Jan; 293(1):190-215. PubMed ID: 31840844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of two lead malaria transmission blocking vaccine candidate antibodies in natural parasite-vector combinations.
    Bompard A; Da DF; Yerbanga RS; Biswas S; Kapulu M; Bousema T; Lefèvre T; Cohuet A; Churcher TS
    Sci Rep; 2017 Jul; 7(1):6766. PubMed ID: 28754921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genotyping of Anopheles mosquito blood meals reveals nonrandom human host selection: implications for human-to-mosquito Plasmodium falciparum transmission.
    Mbewe RB; Keven JB; Mangani C; Wilson ML; Mzilahowa T; Mathanga DP; Valim C; Laufer MK; Walker ED; Cohee LM
    Malar J; 2023 Apr; 22(1):115. PubMed ID: 37029433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression, immunogenicity, histopathology, and potency of a mosquito-based malaria transmission-blocking recombinant vaccine.
    Mathias DK; Plieskatt JL; Armistead JS; Bethony JM; Abdul-Majid KB; McMillan A; Angov E; Aryee MJ; Zhan B; Gillespie P; Keegan B; Jariwala AR; Rezende W; Bottazzi ME; Scorpio DG; Hotez PJ; Dinglasan RR
    Infect Immun; 2012 Apr; 80(4):1606-14. PubMed ID: 22311924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the sickle cell trait on Plasmodium falciparum infectivity from naturally infected gametocyte carriers.
    Ngou CM; Bayibéki AN; Abate L; Makinde OS; Feufack-Donfack LB; Sarah-Matio EM; Bouopda-Tuedom AG; Taconet P; Moiroux N; Awono-Ambéné PH; Talman A; Ayong LS; Berry A; Nsango SE; Morlais I
    BMC Infect Dis; 2023 May; 23(1):317. PubMed ID: 37165325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunopotentiation by Lymph-Node Targeting of a Malaria Transmission-Blocking Nanovaccine.
    Howard GP; Bender NG; Khare P; López-Gutiérrez B; Nyasembe V; Weiss WJ; Simecka JW; Hamerly T; Mao HQ; Dinglasan RR
    Front Immunol; 2021; 12():729086. PubMed ID: 34512663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Host genotype by parasite genotype interactions underlying the resistance of anopheline mosquitoes to Plasmodium falciparum.
    Lambrechts L; Halbert J; Durand P; Gouagna LC; Koella JC
    Malar J; 2005 Jan; 4():3. PubMed ID: 15644136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.