BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 27566354)

  • 1. Formation of core-shell Au@Ag nanorods induced by catecholamines: A comparative study and an analytical application.
    Gorbunova MV; Apyari VV; Dmitrienko SG; Garshev AV
    Anal Chim Acta; 2016 Sep; 936():185-94. PubMed ID: 27566354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence turn-on sensing of L-cysteine based on FRET between Au-Ag nanoclusters and Au nanorods.
    Li JJ; Qiao D; Zhao J; Weng GJ; Zhu J; Zhao JW
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun; 217():247-255. PubMed ID: 30947133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocompatible gold nanorods: one-step surface functionalization, highly colloidal stability, and low cytotoxicity.
    Liu K; Zheng Y; Lu X; Thai T; Lee NA; Bach U; Gooding JJ
    Langmuir; 2015 May; 31(17):4973-80. PubMed ID: 25874503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localized surface plasmon resonance and surface enhanced Raman scattering responses of Au@Ag core-shell nanorods with different thickness of Ag shell.
    Ma Y; Zhou J; Zou W; Jia Z; Petti L; Mormile P
    J Nanosci Nanotechnol; 2014 Jun; 14(6):4245-50. PubMed ID: 24738378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable depolarized light scattering from gold and gold/silver nanorods.
    Khlebtsov B; Khanadeev V; Khlebtsov N
    Phys Chem Chem Phys; 2010 Apr; 12(13):3210-8. PubMed ID: 20237711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Core-shell-shell nanorods for controlled release of silver that can serve as a nanoheater for photothermal treatment on bacteria.
    Hu B; Wang N; Han L; Chen ML; Wang JH
    Acta Biomater; 2015 Jan; 11():511-9. PubMed ID: 25219350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Au@Ag Heterogeneous Nanorods as Nanozyme Interfaces with Peroxidase-Like Activity and Their Application for One-Pot Analysis of Glucose at Nearly Neutral pH.
    Han L; Li C; Zhang T; Lang Q; Liu A
    ACS Appl Mater Interfaces; 2015 Jul; 7(26):14463-70. PubMed ID: 26076372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uniform and controllable preparation of Au-Ag core-shell nanorods using anisotropic silver shell formation on gold nanorods.
    Okuno Y; Nishioka K; Kiya A; Nakashima N; Ishibashi A; Niidome Y
    Nanoscale; 2010 Aug; 2(8):1489-93. PubMed ID: 20820740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unstable reshaping of gold nanorods prepared by a wet chemical method in the presence of silver nitrate.
    Iqbal M; Tae G
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3355-9. PubMed ID: 17252764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of bromide in hydrogen peroxide oxidation of CTAB-stabilized gold nanorods in aqueous solutions.
    Zhu Q; Wu J; Zhao J; Ni W
    Langmuir; 2015 Apr; 31(14):4072-7. PubMed ID: 25785656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids.
    Liu M; Guyot-Sionnest P
    J Phys Chem B; 2005 Dec; 109(47):22192-200. PubMed ID: 16853888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Label-free colorimetric sensor for ultrasensitive detection of heparin based on color quenching of gold nanorods by graphene oxide.
    Fu X; Chen L; Li J; Lin M; You H; Wang W
    Biosens Bioelectron; 2012 Apr; 34(1):227-31. PubMed ID: 22387039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multishell Au/Ag/SiO2 nanorods with tunable optical properties as single particle orientation and rotational tracking probes.
    Chen K; Lin CC; Vela J; Fang N
    Anal Chem; 2015 Apr; 87(8):4096-9. PubMed ID: 25849492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic enhancements of photocatalytic activity of Pt/n-Si/Ag photodiodes using Au/Ag core/shell nanorods.
    Qu Y; Cheng R; Su Q; Duan X
    J Am Chem Soc; 2011 Oct; 133(42):16730-3. PubMed ID: 21961900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface interactions of gold nanorods and polysaccharides: From clusters to individual nanoparticles.
    de Barros HR; Piovan L; Sassaki GL; de Araujo Sabry D; Mattoso N; Nunes ÁM; Meneghetti MR; Riegel-Vidotti IC
    Carbohydr Polym; 2016 Nov; 152():479-486. PubMed ID: 27516295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CTAB promoted synthesis of Au nanorods--temperature effects and stability considerations.
    Becker R; Liedberg B; Käll PO
    J Colloid Interface Sci; 2010 Mar; 343(1):25-30. PubMed ID: 19954787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of adenosine triphosphate through polymerization-induced aggregation of actin-conjugated gold/silver nanorods.
    Liao YJ; Shiang YC; Chen LY; Hsu CL; Huang CC; Chang HT
    Nanotechnology; 2013 Nov; 24(44):444003. PubMed ID: 24113811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of gold nanorods with tunable longitudinal surface plasmon resonance peaks by reductive dopamine.
    Su G; Yang C; Zhu JJ
    Langmuir; 2015 Jan; 31(2):817-23. PubMed ID: 25521416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective nanodecoration of modified cyclodextrin crystals with gold nanorods.
    Herrera B; Adura C; Yutronic N; Kogan MJ; Jara P
    J Colloid Interface Sci; 2013 Jan; 389(1):42-5. PubMed ID: 23062962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled preparation of Au/Ag/SnO2 core-shell nanoparticles using a photochemical method and applications in LSPR based sensing.
    Zhou N; Ye C; Polavarapu L; Xu QH
    Nanoscale; 2015 May; 7(19):9025-32. PubMed ID: 25921493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.