These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 27566774)

  • 1. Preferential sampling and Bayesian geostatistics: Statistical modeling and examples.
    Cecconi L; Grisotto L; Catelan D; Lagazio C; Berrocal V; Biggeri A
    Stat Methods Med Res; 2016 Aug; 25(4):1224-43. PubMed ID: 27566774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preferential sampling in veterinary parasitological surveillance.
    Cecconi L; Biggeri A; Grisotto L; Berrocal V; Rinaldi L; Musella V; Cringoli G; Catelan D
    Geospat Health; 2016 Apr; 11(1):412. PubMed ID: 27087037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geostatistical integration and uncertainty in pollutant concentration surface under preferential sampling.
    Grisotto L; Consonni D; Cecconi L; Catelan D; Lagazio C; Bertazzi PA; Baccini M; Biggeri A
    Geospat Health; 2016 Apr; 11(1):426. PubMed ID: 27087040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistical modelling of the spatial distribution of prevalence of Calicophoron daubneyi infection in sheep from central Italy.
    Biggeri A; Catelan D; Rinaldi L; Dreassi E; Lagazio C; Cringoli G
    Parassitologia; 2005 Mar; 47(1):157-63. PubMed ID: 16044685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disease mapping in veterinary epidemiology: a Bayesian geostatistical approach.
    Biggeri A; Dreassi E; Catelan D; Rinaldi L; Lagazio C; Cringoli G
    Stat Methods Med Res; 2006 Aug; 15(4):337-52. PubMed ID: 16886735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the use of posterior predictive probabilities and prediction uncertainty to tailor informative sampling for parasitological surveillance in livestock.
    Musella V; Rinaldi L; Lagazio C; Cringoli G; Biggeri A; Catelan D
    Vet Parasitol; 2014 Sep; 205(1-2):158-68. PubMed ID: 25131190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling the presence of disease under spatial misalignment using Bayesian latent Gaussian models.
    Barber X; Conesa D; Lladosa S; López-Quílez A
    Geospat Health; 2016 Apr; 11(1):415. PubMed ID: 27087038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Covariate selection in multivariate spatial analysis of ovine parasitic infection.
    Musella V; Catelan D; Rinaldi L; Lagazio C; Cringoli G; Biggeri A
    Prev Vet Med; 2011 May; 99(2-4):69-77. PubMed ID: 21167615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accounting for preferential sampling in species distribution models.
    Pennino MG; Paradinas I; Illian JB; Muñoz F; Bellido JM; López-Quílez A; Conesa D
    Ecol Evol; 2019 Jan; 9(1):653-663. PubMed ID: 30680145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bayesian epidemic models for spatially aggregated count data.
    Malesios C; Demiris N; Kalogeropoulos K; Ntzoufras I
    Stat Med; 2017 Sep; 36(20):3216-3230. PubMed ID: 28608436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Bayesian geostatistical prediction of soil organic carbon contents of solonchak soils in nor-thern Tarim Basin, Xinjiang, China.].
    Wu WM; Wang JQ; Cao Q; Wu JP
    Ying Yong Sheng Tai Xue Bao; 2017 Feb; 28(2):439-448. PubMed ID: 29749151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Statistical models for spatial analysis in parasitology].
    Biggeri A; Catelan D; Dreassi E; Lagazio C; Cringoli G
    Parassitologia; 2004 Jun; 46(1-2):75-8. PubMed ID: 15305691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sheep and Fasciola hepatica in Europe: the GLOWORM experience.
    Rinaldi L; Biggeri A; Musella V; De Waal T; Hertzberg H; Mavrot F; Torgerson PR; Selemetas N; Coll T; Bosco A; Grisotto L; Cringoli G; Catelan D
    Geospat Health; 2015 Mar; 9(2):309-17. PubMed ID: 25826312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping, bayesian geostatistical analysis and spatial prediction of lymphatic filariasis prevalence in Africa.
    Slater H; Michael E
    PLoS One; 2013; 8(8):e71574. PubMed ID: 23951194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Haemonchus contortus: spatial risk distribution for infection in sheep in Europe.
    Rinaldi L; Catelan D; Musella V; Cecconi L; Hertzberg H; Torgerson PR; Mavrot F; De Waal T; Selemetas N; Coll T; Bosco A; Biggeri A; Cringoli G
    Geospat Health; 2015 Mar; 9(2):325-31. PubMed ID: 25826314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling sheep pox disease from the 1994-1998 epidemic in Evros Prefecture, Greece.
    Malesios C; Demiris N; Abas Z; Dadousis K; Koutroumanidis T
    Spat Spatiotemporal Epidemiol; 2014 Oct; 11():1-10. PubMed ID: 25457592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Part 2. Development of Enhanced Statistical Methods for Assessing Health Effects Associated with an Unknown Number of Major Sources of Multiple Air Pollutants.
    Park ES; Symanski E; Han D; Spiegelman C
    Res Rep Health Eff Inst; 2015 Jun; (183 Pt 1-2):51-113. PubMed ID: 26333239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling the geographical distribution of co-infection risk from single-disease surveys.
    Schur N; Gosoniu L; Raso G; Utzinger J; Vounatsou P
    Stat Med; 2011 Jun; 30(14):1761-76. PubMed ID: 21484850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The DHS Program's Modeled Surfaces Spatial Datasets.
    Burgert-Brucker CR; Dontamsetti T; Gething PW
    Stud Fam Plann; 2018 Mar; 49(1):87-92. PubMed ID: 29484673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geostatistical analysis of disease data: accounting for spatial support and population density in the isopleth mapping of cancer mortality risk using area-to-point Poisson kriging.
    Goovaerts P
    Int J Health Geogr; 2006 Nov; 5():52. PubMed ID: 17137504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.