BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 27566777)

  • 1. Direct interrogation of the role of H3K9 in metazoan heterochromatin function.
    Penke TJ; McKay DJ; Strahl BD; Matera AG; Duronio RJ
    Genes Dev; 2016 Aug; 30(16):1866-80. PubMed ID: 27566777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epigenetic regulation of the Drosophila chromosome 4 by the histone H3K9 methyltransferase dSETDB1.
    Tzeng TY; Lee CH; Chan LW; Shen CK
    Proc Natl Acad Sci U S A; 2007 Jul; 104(31):12691-6. PubMed ID: 17652514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasticity in patterns of histone modifications and chromosomal proteins in Drosophila heterochromatin.
    Riddle NC; Minoda A; Kharchenko PV; Alekseyenko AA; Schwartz YB; Tolstorukov MY; Gorchakov AA; Jaffe JD; Kennedy C; Linder-Basso D; Peach SE; Shanower G; Zheng H; Kuroda MI; Pirrotta V; Park PJ; Elgin SC; Karpen GH
    Genome Res; 2011 Feb; 21(2):147-63. PubMed ID: 21177972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterochromatin protein 2 (HP2), a partner of HP1 in Drosophila heterochromatin.
    Shaffer CD; Stephens GE; Thompson BA; Funches L; Bernat JA; Craig CA; Elgin SC
    Proc Natl Acad Sci U S A; 2002 Oct; 99(22):14332-7. PubMed ID: 12376620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. JASPer controls interphase histone H3S10 phosphorylation by chromosomal kinase JIL-1 in Drosophila.
    Albig C; Wang C; Dann GP; Wojcik F; Schauer T; Krause S; Maenner S; Cai W; Li Y; Girton J; Muir TW; Johansen J; Johansen KM; Becker PB; Regnard C
    Nat Commun; 2019 Nov; 10(1):5343. PubMed ID: 31767855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linker histone H1 is essential for Drosophila development, the establishment of pericentric heterochromatin, and a normal polytene chromosome structure.
    Lu X; Wontakal SN; Emelyanov AV; Morcillo P; Konev AY; Fyodorov DV; Skoultchi AI
    Genes Dev; 2009 Feb; 23(4):452-65. PubMed ID: 19196654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Windei, the Drosophila homolog of mAM/MCAF1, is an essential cofactor of the H3K9 methyl transferase dSETDB1/Eggless in germ line development.
    Koch CM; Honemann-Capito M; Egger-Adam D; Wodarz A
    PLoS Genet; 2009 Sep; 5(9):e1000644. PubMed ID: 19750210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterochromatin formation in Drosophila requires genome-wide histone deacetylation in cleavage chromatin before mid-blastula transition in early embryogenesis.
    Walther M; Schrahn S; Krauss V; Lein S; Kessler J; Jenuwein T; Reuter G
    Chromosoma; 2020 Mar; 129(1):83-98. PubMed ID: 31950239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Mi-2 nucleosome remodeler and the Rpd3 histone deacetylase are involved in piRNA-guided heterochromatin formation.
    Mugat B; Nicot S; Varela-Chavez C; Jourdan C; Sato K; Basyuk E; Juge F; Siomi MC; Pélisson A; Chambeyron S
    Nat Commun; 2020 Jun; 11(1):2818. PubMed ID: 32499524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into HP1a-Chromatin Interactions.
    Meyer-Nava S; Nieto-Caballero VE; Zurita M; Valadez-Graham V
    Cells; 2020 Aug; 9(8):. PubMed ID: 32784937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linker histone H1 prevents R-loop accumulation and genome instability in heterochromatin.
    Bayona-Feliu A; Casas-Lamesa A; Reina O; Bernués J; Azorín F
    Nat Commun; 2017 Aug; 8(1):283. PubMed ID: 28819201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N-terminal phosphorylation of HP1α increases its nucleosome-binding specificity.
    Nishibuchi G; Machida S; Osakabe A; Murakoshi H; Hiragami-Hamada K; Nakagawa R; Fischle W; Nishimura Y; Kurumizaka H; Tagami H; Nakayama J
    Nucleic Acids Res; 2014 Nov; 42(20):12498-511. PubMed ID: 25332400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mode of SUV420H2 heterochromatin localization through multiple HP1 binding motifs in the heterochromatic targeting module.
    Nakao M; Sato Y; Aizawa A; Kimura H
    Genes Cells; 2024 May; 29(5):361-379. PubMed ID: 38403935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase separation drives heterochromatin domain formation.
    Strom AR; Emelyanov AV; Mir M; Fyodorov DV; Darzacq X; Karpen GH
    Nature; 2017 Jul; 547(7662):241-245. PubMed ID: 28636597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterochromatic 3D genome organization is directed by HP1a- and H3K9-dependent and independent mechanisms.
    Stutzman AV; Hill CA; Armstrong RL; Gohil R; Duronio RJ; Dowen JM; McKay DJ
    Mol Cell; 2024 May; ():. PubMed ID: 38795706
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Benner L; Castro EA; Whitworth C; Venken KJT; Yang H; Fang J; Oliver B; Cook KR; Lerit DA
    Genetics; 2019 Nov; 213(3):877-895. PubMed ID: 31558581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterochromatic genome stability requires regulators of histone H3 K9 methylation.
    Peng JC; Karpen GH
    PLoS Genet; 2009 Mar; 5(3):e1000435. PubMed ID: 19325889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterochromatin protein 1 (HP1) is associated with induced gene expression in Drosophila euchromatin.
    Piacentini L; Fanti L; Berloco M; Perrini B; Pimpinelli S
    J Cell Biol; 2003 May; 161(4):707-14. PubMed ID: 12756231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural insights into the binding mechanism of Clr4 methyltransferase to H3K9 methylated nucleosome.
    Saab C; Stephan J; Akoury E
    Sci Rep; 2024 Mar; 14(1):5438. PubMed ID: 38443490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Chromatin Structure Modifiers on the trans-Acting Heterochromatin Position Effect in Drosophila melanogaster.
    Solodovnikov AA; Lavrov SA; Shatskikh AS; Gvozdev VA
    Dokl Biochem Biophys; 2023 Dec; 513(Suppl 1):S75-S81. PubMed ID: 38379078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.