BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

506 related articles for article (PubMed ID: 27566851)

  • 21. Efficient production of biallelic GGTA1 knockout pigs by cytoplasmic microinjection of CRISPR/Cas9 into zygotes.
    Petersen B; Frenzel A; Lucas-Hahn A; Herrmann D; Hassel P; Klein S; Ziegler M; Hadeler KG; Niemann H
    Xenotransplantation; 2016 Sep; 23(5):338-46. PubMed ID: 27610605
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gene targeting technologies in rats: zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats.
    Mashimo T
    Dev Growth Differ; 2014 Jan; 56(1):46-52. PubMed ID: 24372523
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genome editing in sea urchin embryos by using a CRISPR/Cas9 system.
    Lin CY; Su YH
    Dev Biol; 2016 Jan; 409(2):420-8. PubMed ID: 26632489
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes.
    Liang P; Xu Y; Zhang X; Ding C; Huang R; Zhang Z; Lv J; Xie X; Chen Y; Li Y; Sun Y; Bai Y; Songyang Z; Ma W; Zhou C; Huang J
    Protein Cell; 2015 May; 6(5):363-372. PubMed ID: 25894090
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Efficient Generation of Myostatin Knock-Out Sheep Using CRISPR/Cas9 Technology and Microinjection into Zygotes.
    Crispo M; Mulet AP; Tesson L; Barrera N; Cuadro F; dos Santos-Neto PC; Nguyen TH; Crénéguy A; Brusselle L; Anegón I; Menchaca A
    PLoS One; 2015; 10(8):e0136690. PubMed ID: 26305800
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient PRNP deletion in bovine genome using gene-editing technologies in bovine cells.
    Choi W; Kim E; Yum SY; Lee C; Lee J; Moon J; Ramachandra S; Malaweera BO; Cho J; Kim JS; Kim S; Jang G
    Prion; 2015; 9(4):278-91. PubMed ID: 26217959
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Controlled delivery of β-globin-targeting TALENs and CRISPR/Cas9 into mammalian cells for genome editing using microinjection.
    Cottle RN; Lee CM; Archer D; Bao G
    Sci Rep; 2015 Nov; 5():16031. PubMed ID: 26558999
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The combinational use of CRISPR/Cas9-based gene editing and targeted toxin technology enables efficient biallelic knockout of the α-1,3-galactosyltransferase gene in porcine embryonic fibroblasts.
    Sato M; Miyoshi K; Nagao Y; Nishi Y; Ohtsuka M; Nakamura S; Sakurai T; Watanabe S
    Xenotransplantation; 2014; 21(3):291-300. PubMed ID: 24919525
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Application of genome-editing systems to enhance available pig resources for agriculture and biomedicine.
    Lee K; Farrell K; Uh K
    Reprod Fertil Dev; 2019 Jan; 32(2):40-49. PubMed ID: 32188556
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 Gene Editing Technique in Xenotransplantation.
    Naeimi Kararoudi M; Hejazi SS; Elmas E; Hellström M; Naeimi Kararoudi M; Padma AM; Lee D; Dolatshad H
    Front Immunol; 2018; 9():1711. PubMed ID: 30233563
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Generation of site-specific mutations in the rat genome via CRISPR/Cas9.
    Guan Y; Shao Y; Li D; Liu M
    Methods Enzymol; 2014; 546():297-317. PubMed ID: 25398346
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel promoterless gene targeting vector to efficiently disrupt PRNP gene in cattle.
    Wang S; Zhang K; Ding F; Zhao R; Li S; Li R; Xu L; Song C; Dai Y; Li N
    J Biotechnol; 2013 Feb; 163(4):377-85. PubMed ID: 23201560
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impacts of oocyte/zygote timing for in vitro fertilization and gene editing in the dog.
    Mukai C; Nelson JL; Cheong SH; Diel de Amorim M; Travis AJ
    Theriogenology; 2020 Jul; 150():347-352. PubMed ID: 32088047
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RNA-dependent DNA endonuclease Cas9 of the CRISPR system: Holy Grail of genome editing?
    Gasiunas G; Siksnys V
    Trends Microbiol; 2013 Nov; 21(11):562-7. PubMed ID: 24095303
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multiple genome modifications by the CRISPR/Cas9 system in zebrafish.
    Ota S; Hisano Y; Ikawa Y; Kawahara A
    Genes Cells; 2014 Jul; 19(7):555-64. PubMed ID: 24848337
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Progress of application and off-target effects of CRISPR/Cas9.
    Zheng W; Gu F
    Yi Chuan; 2015 Oct; 37(10):1003-10. PubMed ID: 26496752
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9.
    Du H; Zeng X; Zhao M; Cui X; Wang Q; Yang H; Cheng H; Yu D
    J Biotechnol; 2016 Jan; 217():90-7. PubMed ID: 26603121
    [TBL] [Abstract][Full Text] [Related]  

  • 38. One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces.
    Huang H; Zheng G; Jiang W; Hu H; Lu Y
    Acta Biochim Biophys Sin (Shanghai); 2015 Apr; 47(4):231-43. PubMed ID: 25739462
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Site-Specific Integration of Exogenous Genes Using Genome Editing Technologies in Zebrafish.
    Kawahara A; Hisano Y; Ota S; Taimatsu K
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27187373
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CRISPR/Cas9 genome editing technique and its application in site-directed genome modification of animals.
    Zhou JW; Xu QP; Yao J; Yu SM; Cao SZ
    Yi Chuan; 2015 Oct; 37(10):1011-20. PubMed ID: 26496753
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.