BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 27567147)

  • 1. Quantile regression and Bayesian cluster detection to identify radon prone areas.
    Sarra A; Fontanella L; Valentini P; Palermi S
    J Environ Radioact; 2016 Nov; 164():354-364. PubMed ID: 27567147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved predictive mapping of indoor radon concentrations using ensemble regression trees based on automatic clustering of geological units.
    Kropat G; Bochud F; Jaboyedoff M; Laedermann JP; Murith C; Palacios Gruson M; Baechler S
    J Environ Radioact; 2015 Sep; 147():51-62. PubMed ID: 26042833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A statistical evaluation of the influence of housing characteristics and geogenic radon potential on indoor radon concentrations in France.
    Demoury C; Ielsch G; Hemon D; Laurent O; Laurier D; Clavel J; Guillevic J
    J Environ Radioact; 2013 Dec; 126():216-25. PubMed ID: 24056050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variance of indoor radon concentration: Major influencing factors.
    Yarmoshenko I; Vasilyev A; Malinovsky G; Bossew P; Žunić ZS; Onischenko A; Zhukovsky M
    Sci Total Environ; 2016 Jan; 541():155-160. PubMed ID: 26409145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geographical distribution of indoor radon and related geological characteristics in Bonghwa County, a provisional radon-prone area in Korea.
    Lee ER; Chang BU; Kim HJ; Song MH; Kim YJ
    Radiat Prot Dosimetry; 2015 Dec; 167(4):620-5. PubMed ID: 25377749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methodology developed to make the Quebec indoor radon potential map.
    Drolet JP; Martel R; Poulin P; Dessau JC
    Sci Total Environ; 2014 Mar; 473-474():372-80. PubMed ID: 24378928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Indoor radon, geogenic radon surrogates and geology - Investigations on their correlation.
    Friedmann H; Baumgartner A; Bernreiter M; Gräser J; Gruber V; Kabrt F; Kaineder H; Maringer FJ; Ringer W; Seidel C; Wurm G
    J Environ Radioact; 2017 Jan; 166(Pt 2):382-389. PubMed ID: 27158059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geogenic and anthropogenic impacts on indoor radon in the Techa River region.
    Yarmoshenko I; Malinovsky G; Vasilyev A; Onischenko A; Seleznev A
    Sci Total Environ; 2016 Nov; 571():1298-303. PubMed ID: 27474991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationships between indoor radon concentrations, thermal retrofit and dwelling characteristics.
    Collignan B; Le Ponner E; Mandin C
    J Environ Radioact; 2016 Dec; 165():124-130. PubMed ID: 27693653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geostatistical simulations for radon indoor with a nested model including the housing factor.
    Cafaro C; Giovani C; Garavaglia M
    J Environ Radioact; 2016 Jan; 151 Pt 1():264-274. PubMed ID: 26547362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of the advanced radon diagnosis methods in the indoor building environment.
    Fronka A; Moucka L; Cechák T
    Radiat Prot Dosimetry; 2008; 130(1):72-5. PubMed ID: 18390535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Confluent impact of housing and geology on indoor radon concentrations in Atlanta, Georgia, United States.
    Dai D; Neal FB; Diem J; Deocampo DM; Stauber C; Dignam T
    Sci Total Environ; 2019 Jun; 668():500-511. PubMed ID: 30852225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radon-prone areas in the Lombard plain.
    Sesana L; Polla G; Facchini U; De Capitani L
    J Environ Radioact; 2005; 82(1):51-62. PubMed ID: 15829336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the spatial variation of indoor radon concentrations (national survey in Bulgaria).
    Ivanova K; Stojanovska Z; Kunovska B; Chobanova N; Badulin V; Benderev A
    Environ Sci Pollut Res Int; 2019 Mar; 26(7):6971-6979. PubMed ID: 30645746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of ventilation systems and energy savings in a building on the mechanisms governing the indoor radon activity concentration.
    Collignan B; Powaga E
    J Environ Radioact; 2019 Jan; 196():268-273. PubMed ID: 29174845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High variability of indoor radon concentrations in uraniferous bedrock areas in the Balkan region.
    Žunić ZS; Ujić P; Nađđerđ L; Yarmoshenko IV; Radanović SB; Komatina Petrović S; Čeliković I; Komatina M; Bossew P
    Appl Radiat Isot; 2014 Dec; 94():328-337. PubMed ID: 25305525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probability mapping of indoor radon-prone areas using disjunctive kriging.
    Raspa G; Salvi F; Torri G
    Radiat Prot Dosimetry; 2010 Jan; 138(1):3-19. PubMed ID: 19789199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Definition of radon prone areas in Friuli Venezia Giulia region, Italy, using geostatistical tools.
    Cafaro C; Bossew P; Giovani C; Garavaglia M
    J Environ Radioact; 2014 Dec; 138():208-19. PubMed ID: 25261867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of Northern Ireland radon maps based on indoor radon measurements and geology with maps derived by predictive modelling of airborne radiometric and ground permeability data.
    Appleton JD; Miles JC; Young M
    Sci Total Environ; 2011 Mar; 409(8):1572-83. PubMed ID: 21310464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Indoor radon levels in primary schools of Patras, Greece.
    Papaefthymiou H; Georgiou CD
    Radiat Prot Dosimetry; 2007; 124(2):172-6. PubMed ID: 17513290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.