These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 27567147)

  • 21. Combination of geological data and radon survey results for radon mapping.
    Zhukovsky M; Yarmoshenko I; Kiselev S
    J Environ Radioact; 2012 Oct; 112():1-3. PubMed ID: 22466302
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Indoor radon concentration in geothermal areas of central Italy.
    Ciolini R; Mazed D
    J Environ Radioact; 2010 Sep; 101(9):712-6. PubMed ID: 20494496
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mapping radon-prone areas using γ-radiation dose rate and geological information.
    García-Talavera M; García-Pérez A; Rey C; Ramos L
    J Radiol Prot; 2013 Sep; 33(3):605-20. PubMed ID: 23803560
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An approach to improve the Austrian Radon Potential Map by Bayesian statistics.
    Friedmann H; Gröller J
    J Environ Radioact; 2010 Oct; 101(10):804-8. PubMed ID: 20022149
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spatial modeling of geogenic indoor radon distribution in Chungcheongnam-do, South Korea using enhanced machine learning algorithms.
    Rezaie F; Panahi M; Bateni SM; Kim S; Lee J; Lee J; Yoo J; Kim H; Won Kim S; Lee S
    Environ Int; 2023 Jan; 171():107724. PubMed ID: 36608375
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Estimation of radon prone areas through binary classification, part 2: radon prone geologies.
    Bossew P
    J Environ Radioact; 2015 Mar; 141():44-50. PubMed ID: 25528217
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Geographically weighted regression and geostatistical techniques to construct the geogenic radon potential map of the Lazio region: A methodological proposal for the European Atlas of Natural Radiation.
    Ciotoli G; Voltaggio M; Tuccimei P; Soligo M; Pasculli A; Beaubien SE; Bigi S
    J Environ Radioact; 2017 Jan; 166(Pt 2):355-375. PubMed ID: 27241368
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A geostatistical autopsy of the Austrian indoor radon survey (1992-2002).
    Dubois G; Bossew P; Friedmann H
    Sci Total Environ; 2007 May; 377(2-3):378-95. PubMed ID: 17368512
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Machine learning for the analysis of indoor radon distribution, compared with ordinary kriging.
    Pegoretti S; Verdi L
    Radiat Prot Dosimetry; 2009 Dec; 137(3-4):324-8. PubMed ID: 19914968
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Indoor radon measurements in Turkey dwellings.
    Celebi N; Ataksor B; Taskın H; Bingoldag NA
    Radiat Prot Dosimetry; 2015 Dec; 167(4):626-32. PubMed ID: 25389360
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hierarchical modeling of indoor radon concentration: how much do geology and building factors matter?
    Borgoni R; De Francesco D; De Bartolo D; Tzavidis N
    J Environ Radioact; 2014 Dec; 138():227-37. PubMed ID: 25261869
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thoron in indoor air: modeling for a better exposure estimate.
    Meisenberg O; Tschiersch J
    Indoor Air; 2011 Jun; 21(3):240-52. PubMed ID: 21198887
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The uncertainty in the radon hazard classification of areas as a function of the number of measurements.
    Friedmann H; Baumgartner A; Gruber V; Kaineder H; Maringer FJ; Ringer W; Seidel C
    J Environ Radioact; 2017 Jul; 173():6-10. PubMed ID: 27554706
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Determination of radon prone areas by optimized binary classification.
    Bossew P
    J Environ Radioact; 2014 Mar; 129():121-32. PubMed ID: 24412776
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling of geogenic radon in Switzerland based on ordered logistic regression.
    Kropat G; Bochud F; Murith C; Palacios Gruson M; Baechler S
    J Environ Radioact; 2017 Jan; 166(Pt 2):376-381. PubMed ID: 27343029
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Geophysical methods in radon risk studies.
    Wysocka M; Kotyrba A; Chalupnik S; Skowronek J
    J Environ Radioact; 2005; 82(3):351-62. PubMed ID: 15885380
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of indoor air conditions on radon concentration in a detached house.
    Akbari K; Mahmoudi J; Ghanbari M
    J Environ Radioact; 2013 Feb; 116():166-73. PubMed ID: 23159846
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A statistical evaluation of the geogenic controls on indoor radon concentrations and radon risk.
    Appleton JD; Miles JC
    J Environ Radioact; 2010 Oct; 101(10):799-803. PubMed ID: 19577346
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preliminary results regarding the first map of residential radon in some regions in Romania.
    Cosma C; Cucoş Dinu A; Dicu T
    Radiat Prot Dosimetry; 2013 Jul; 155(3):343-50. PubMed ID: 23407885
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The predictive power of airborne gamma ray survey data on the locations of domestic radon hazards in Norway: A strong case for utilizing airborne data in large-scale radon potential mapping.
    Smethurst MA; Watson RJ; Baranwal VC; Rudjord AL; Finne I
    J Environ Radioact; 2017 Jan; 166(Pt 2):321-340. PubMed ID: 27105766
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.