These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 27567502)

  • 1. Pattern transitions in spatial epidemics: Mechanisms and emergent properties.
    Sun GQ; Jusup M; Jin Z; Wang Y; Wang Z
    Phys Life Rev; 2016 Dec; 19():43-73. PubMed ID: 27567502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noise, nonlinearity and seasonality: the epidemics of whooping cough revisited.
    Nguyen HT; Rohani P
    J R Soc Interface; 2008 Apr; 5(21):403-13. PubMed ID: 17878136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pattern transition phenomena in spatial modeling of infectious diseases: Comment on "Pattern transitions in spatial epidemics: Mechanisms and emergent properties" by Gui-Quan Sun et al.
    Wang H
    Phys Life Rev; 2016 Dec; 19():81-82. PubMed ID: 28340929
    [No Abstract]   [Full Text] [Related]  

  • 4. Understanding spatial spread of emerging infectious diseases in contemporary populations: Comment on "Pattern transitions in spatial epidemics: Mechanisms and emergent properties" by Gui-Quan Sun et al.
    Li HJ; Cheng Q; Wang L
    Phys Life Rev; 2016 Dec; 19():95-97. PubMed ID: 27818036
    [No Abstract]   [Full Text] [Related]  

  • 5. Transition from stationary pattern to patch invasion in infectious diseases with space: Comment on "Pattern transitions in spatial epidemics: Mechanisms and emergent properties" by Gui-Quan Sun et al.
    Li L
    Phys Life Rev; 2016 Dec; 19():83-84. PubMed ID: 28340930
    [No Abstract]   [Full Text] [Related]  

  • 6. Spatial heterogeneity, nonlinear dynamics and chaos in infectious diseases.
    Grenfell BT; Kleczkowski A; Gilligan CA; Bolker BM
    Stat Methods Med Res; 1995 Jun; 4(2):160-83. PubMed ID: 7582203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards high-resolution spatial modeling of infectious disease dynamics: Comment on "Pattern transitions in spatial epidemics: Mechanisms and emergent properties" by Gui-Quan Sun et al.
    Guo ZG; Huang SH
    Phys Life Rev; 2016 Dec; 19():93-94. PubMed ID: 27771275
    [No Abstract]   [Full Text] [Related]  

  • 8. Predicting spatial dynamics of infectious disease: Causes and consequences: Comment on "Pattern transitions in spatial epidemics: Mechanisms and emergent properties" by Gui-Quan Sun et al.
    Bhattacharyya S
    Phys Life Rev; 2016 Dec; 19():74-75. PubMed ID: 27663780
    [No Abstract]   [Full Text] [Related]  

  • 9. The spreading of infectious diseases in modern socio-technical systems Comment on "Pattern transitions in spatial epidemics: Mechanisms and emergent properties" by Gui-Quan Sun et al.
    Perra N
    Phys Life Rev; 2016 Dec; 19():87-89. PubMed ID: 27665175
    [No Abstract]   [Full Text] [Related]  

  • 10. Measuring Spatial Dependence for Infectious Disease Epidemiology.
    Lessler J; Salje H; Grabowski MK; Cummings DA
    PLoS One; 2016; 11(5):e0155249. PubMed ID: 27196422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Opposite patterns of synchrony in sympatric disease metapopulations.
    Rohani P; Earn DJ; Grenfell BT
    Science; 1999 Oct; 286(5441):968-71. PubMed ID: 10542154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stochastic amplification in epidemics.
    Alonso D; McKane AJ; Pascual M
    J R Soc Interface; 2007 Jun; 4(14):575-82. PubMed ID: 17251128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recurrent epidemics in small world networks.
    Verdasca J; Telo da Gama MM; Nunes A; Bernardino NR; Pacheco JM; Gomes MC
    J Theor Biol; 2005 Apr; 233(4):553-61. PubMed ID: 15748915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predictability in a highly stochastic system: final size of measles epidemics in small populations.
    Caudron Q; Mahmud AS; Metcalf CJ; Gottfreðsson M; Viboud C; Cliff AD; Grenfell BT
    J R Soc Interface; 2015 Jan; 12(102):20141125. PubMed ID: 25411411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decreasing stochasticity through enhanced seasonality in measles epidemics.
    Mantilla-Beniers NB; Bjørnstad ON; Grenfell BT; Rohani P
    J R Soc Interface; 2010 May; 7(46):727-39. PubMed ID: 19828508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determinants of periodicity in seasonally driven epidemics.
    Uziel A; Stone L
    J Theor Biol; 2012 Jul; 305():88-95. PubMed ID: 22465112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of human mobility on the periodicities and mechanisms underlying measles dynamics.
    Marguta R; Parisi A
    J R Soc Interface; 2015 Mar; 12(104):20141317. PubMed ID: 25673302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A stochastic model for early identification of infectious disease epidemics with application to measles cases in Bangladesh.
    Sharmin S; Rayhan MI
    Asia Pac J Public Health; 2015 Mar; 27(2):NP816-23. PubMed ID: 23165490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human birth seasonality: latitudinal gradient and interplay with childhood disease dynamics.
    Martinez-Bakker M; Bakker KM; King AA; Rohani P
    Proc Biol Sci; 2014 May; 281(1783):20132438. PubMed ID: 24695423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stochastic effects in a seasonally forced epidemic model.
    Rozhnova G; Nunes A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041906. PubMed ID: 21230312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.