These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 27567601)
1. Equilibrative nucleoside transporter ENT1 as a biomarker of Huntington disease. Guitart X; Bonaventura J; Rea W; Orrú M; Cellai L; Dettori I; Pedata F; Brugarolas M; Cortés A; Casadó V; Chang CP; Narayanan M; Chern Y; Ferré S Neurobiol Dis; 2016 Dec; 96():47-53. PubMed ID: 27567601 [TBL] [Abstract][Full Text] [Related]
2. Targeting ENT1 and adenosine tone for the treatment of Huntington's disease. Kao YH; Lin MS; Chen CM; Wu YR; Chen HM; Lai HL; Chern Y; Lin CJ Hum Mol Genet; 2017 Feb; 26(3):467-478. PubMed ID: 28069792 [TBL] [Abstract][Full Text] [Related]
3. Targeting the equilibrative nucleoside transporter ENT1 in Huntington disease. Guitart X; Chern Y; Ferré S Oncotarget; 2017 Feb; 8(8):12550-12551. PubMed ID: 28179589 [No Abstract] [Full Text] [Related]
4. Adenosine transporter ENT1 regulates the acquisition of goal-directed behavior and ethanol drinking through A2A receptor in the dorsomedial striatum. Nam HW; Hinton DJ; Kang NY; Kim T; Lee MR; Oliveros A; Adams C; Ruby CL; Choi DS J Neurosci; 2013 Mar; 33(10):4329-38. PubMed ID: 23467349 [TBL] [Abstract][Full Text] [Related]
5. A new drug design targeting the adenosinergic system for Huntington's disease. Huang NK; Lin JH; Lin JT; Lin CI; Liu EM; Lin CJ; Chen WP; Shen YC; Chen HM; Chen JB; Lai HL; Yang CW; Chiang MC; Wu YS; Chang C; Chen JF; Fang JM; Lin YL; Chern Y PLoS One; 2011; 6(6):e20934. PubMed ID: 21713039 [TBL] [Abstract][Full Text] [Related]
6. Expression, pharmacology and functional activity of adenosine A1 receptors in genetic models of Huntington's disease. Ferrante A; Martire A; Pepponi R; Varani K; Vincenzi F; Ferraro L; Beggiato S; Tebano MT; Popoli P Neurobiol Dis; 2014 Nov; 71():193-204. PubMed ID: 25132555 [TBL] [Abstract][Full Text] [Related]
8. Functional changes in postsynaptic adenosine A(2A) receptors during early stages of a rat model of Huntington disease. Orrú M; Zanoveli JM; Quiroz C; Nguyen HP; Guitart X; Ferré S Exp Neurol; 2011 Nov; 232(1):76-80. PubMed ID: 21867705 [TBL] [Abstract][Full Text] [Related]
9. Adenosine and glutamate extracellular concentrations and mitogen-activated protein kinases in the striatum of Huntington transgenic mice. Selective antagonism of adenosine A2A receptors reduces transmitter outflow. Gianfriddo M; Melani A; Turchi D; Giovannini MG; Pedata F Neurobiol Dis; 2004 Oct; 17(1):77-88. PubMed ID: 15350968 [TBL] [Abstract][Full Text] [Related]
10. Inactivation of adenosine A2A receptors reverses working memory deficits at early stages of Huntington's disease models. Li W; Silva HB; Real J; Wang YM; Rial D; Li P; Payen MP; Zhou Y; Muller CE; Tomé AR; Cunha RA; Chen JF Neurobiol Dis; 2015 Jul; 79():70-80. PubMed ID: 25892655 [TBL] [Abstract][Full Text] [Related]
11. Elucidating the role of the A2A adenosine receptor in neurodegeneration using neurons derived from Huntington's disease iPSCs. Chiu FL; Lin JT; Chuang CY; Chien T; Chen CM; Chen KH; Hsiao HY; Lin YS; Chern Y; Kuo HC Hum Mol Genet; 2015 Nov; 24(21):6066-79. PubMed ID: 26264576 [TBL] [Abstract][Full Text] [Related]
13. Hyperactivation of D1 and A2A receptors contributes to cognitive dysfunction in Huntington's disease. Tyebji S; Saavedra A; Canas PM; Pliassova A; Delgado-García JM; Alberch J; Cunha RA; Gruart A; Pérez-Navarro E Neurobiol Dis; 2015 Feb; 74():41-57. PubMed ID: 25449908 [TBL] [Abstract][Full Text] [Related]
14. Exercise-Induced Adaptations to the Mouse Striatal Adenosine System. Bauer EE; Buhr TJ; Reed CH; Clark PJ Neural Plast; 2020; 2020():5859098. PubMed ID: 32399024 [TBL] [Abstract][Full Text] [Related]
15. The Corticostriatal Adenosine A Li Z; Chen X; Wang T; Gao Y; Li F; Chen L; Xue J; He Y; Li Y; Guo W; Zheng W; Zhang L; Ye F; Ren X; Feng Y; Chan P; Chen JF Biol Psychiatry; 2018 Mar; 83(6):530-541. PubMed ID: 28941549 [TBL] [Abstract][Full Text] [Related]
16. Increased 5-methylcytosine and decreased 5-hydroxymethylcytosine levels are associated with reduced striatal A2AR levels in Huntington's disease. Villar-Menéndez I; Blanch M; Tyebji S; Pereira-Veiga T; Albasanz JL; Martín M; Ferrer I; Pérez-Navarro E; Barrachina M Neuromolecular Med; 2013 Jun; 15(2):295-309. PubMed ID: 23385980 [TBL] [Abstract][Full Text] [Related]
17. Lack of association of somatic CAG repeat expansion with striatal neurodegeneration in HD knock-in animal models. Bai D; Yin P; Zhang Y; Sun F; Chen L; Lin L; Yan S; Li S; Li XJ Hum Mol Genet; 2021 Jul; 30(16):1497-1508. PubMed ID: 33949657 [TBL] [Abstract][Full Text] [Related]
18. Treadmill exercise delays the onset of non-motor behaviors and striatal pathology in the CAG Stefanko DP; Shah VD; Yamasaki WK; Petzinger GM; Jakowec MW Neurobiol Dis; 2017 Sep; 105():15-32. PubMed ID: 28502806 [TBL] [Abstract][Full Text] [Related]
19. Alterations of striatal indirect pathway neurons precede motor deficits in two mouse models of Huntington's disease. Sebastianutto I; Cenci MA; Fieblinger T Neurobiol Dis; 2017 Sep; 105():117-131. PubMed ID: 28578004 [TBL] [Abstract][Full Text] [Related]
20. Nucleoside/nucleobase transport and metabolism by microvascular endothelial cells isolated from ENT1-/- mice. Bone DB; Choi DS; Coe IR; Hammond JR Am J Physiol Heart Circ Physiol; 2010 Sep; 299(3):H847-56. PubMed ID: 20543083 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]