BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 27567755)

  • 1. Designing sensory-substitution devices: Principles, pitfalls and potential1.
    Kristjánsson Á; Moldoveanu A; Jóhannesson ÓI; Balan O; Spagnol S; Valgeirsdóttir VV; Unnthorsson R
    Restor Neurol Neurosci; 2016 Sep; 34(5):769-87. PubMed ID: 27567755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multisensory perceptual learning and sensory substitution.
    Proulx MJ; Brown DJ; Pasqualotto A; Meijer P
    Neurosci Biobehav Rev; 2014 Apr; 41():16-25. PubMed ID: 23220697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Similarities and differences among the senses.
    Marks LE
    Int J Neurosci; 1983 May; 19(1-4):1-11. PubMed ID: 6874244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct Neural Mechanisms of Spatial Attention and Expectation Guide Perceptual Inference in a Multisensory World.
    Zuanazzi A; Noppeney U
    J Neurosci; 2019 Mar; 39(12):2301-2312. PubMed ID: 30659086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensory substitution as an artificially acquired synaesthesia.
    Ward J; Wright T
    Neurosci Biobehav Rev; 2014 Apr; 41():26-35. PubMed ID: 22885223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A self-training program for sensory substitution devices.
    Buchs G; Haimler B; Kerem M; Maidenbaum S; Braun L; Amedi A
    PLoS One; 2021; 16(4):e0250281. PubMed ID: 33905446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multisensory inclusive design with sensory substitution.
    Lloyd-Esenkaya T; Lloyd-Esenkaya V; O'Neill E; Proulx MJ
    Cogn Res Princ Implic; 2020 Aug; 5(1):37. PubMed ID: 32770416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mixing up the Senses: Sensory Substitution Is Not a Form of Artificially Induced Synaesthesia.
    Kirsch LP; Job X; Auvray M
    Multisens Res; 2020 Jul; 34(3):297-322. PubMed ID: 33706280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multisensory and spatial processes in sensory substitution.
    Auvray M
    Restor Neurol Neurosci; 2019; 37(6):609-619. PubMed ID: 31796711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The neurocognitive bases of human multimodal food perception: sensory integration.
    Verhagen JV; Engelen L
    Neurosci Biobehav Rev; 2006; 30(5):613-50. PubMed ID: 16457886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of visual deprivation and experience on the performance of sensory substitution devices.
    Stronks HC; Nau AC; Ibbotson MR; Barnes N
    Brain Res; 2015 Oct; 1624():140-152. PubMed ID: 26183014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensory Substitution and Multimodal Mental Imagery.
    Nanay B
    Perception; 2017 Sep; 46(9):1014-1026. PubMed ID: 28399717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Other ways of seeing: From behavior to neural mechanisms in the online "visual" control of action with sensory substitution.
    Proulx MJ; Gwinnutt J; Dell'Erba S; Levy-Tzedek S; de Sousa AA; Brown DJ
    Restor Neurol Neurosci; 2016; 34(1):29-44. PubMed ID: 26599473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The evolution of a visual-to-auditory sensory substitution device using interactive genetic algorithms.
    Wright T; Ward J
    Q J Exp Psychol (Hove); 2013 Aug; 66(8):1620-38. PubMed ID: 23298393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural Encoding of Active Multi-Sensing Enhances Perceptual Decision-Making via a Synergistic Cross-Modal Interaction.
    Delis I; Ince RAA; Sajda P; Wang Q
    J Neurosci; 2022 Mar; 42(11):2344-2355. PubMed ID: 35091504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Behavioral, perceptual, and neural alterations in sensory and multisensory function in autism spectrum disorder.
    Baum SH; Stevenson RA; Wallace MT
    Prog Neurobiol; 2015 Nov; 134():140-60. PubMed ID: 26455789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcranial direct current stimulation as a tool in the study of sensory-perceptual processing.
    Costa TL; Lapenta OM; Boggio PS; Ventura DF
    Atten Percept Psychophys; 2015 Aug; 77(6):1813-40. PubMed ID: 26139152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immediate improvement of speech-in-noise perception through multisensory stimulation via an auditory to tactile sensory substitution.
    Cieśla K; Wolak T; Lorens A; Heimler B; Skarżyński H; Amedi A
    Restor Neurol Neurosci; 2019; 37(2):155-166. PubMed ID: 31006700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multisensory representation of frequency across audition and touch: high density electrical mapping reveals early sensory-perceptual coupling.
    Butler JS; Foxe JJ; Fiebelkorn IC; Mercier MR; Molholm S
    J Neurosci; 2012 Oct; 32(44):15338-44. PubMed ID: 23115172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multisensory contributions to the perception of motion.
    Soto-Faraco S; Kingstone A; Spence C
    Neuropsychologia; 2003; 41(13):1847-62. PubMed ID: 14527547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.