BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 27567755)

  • 21. The Topo-Speech sensory substitution system as a method of conveying spatial information to the blind and vision impaired.
    Maimon A; Wald IY; Ben Oz M; Codron S; Netzer O; Heimler B; Amedi A
    Front Hum Neurosci; 2022; 16():1058093. PubMed ID: 36776219
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Representing colour through hearing and touch in sensory substitution devices.
    Hamilton-Fletcher G; Ward J
    Multisens Res; 2013; 26(6):503-32. PubMed ID: 24800410
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sensory loss enhances multisensory integration performance.
    Peter MG; Porada DK; Regenbogen C; Olsson MJ; Lundström JN
    Cortex; 2019 Nov; 120():116-130. PubMed ID: 31299497
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Active touch facilitates object size perception in children but not adults: A multisensory event related potential study.
    Scheller M; Garcia S; Bathelt J; de Haan M; Petrini K
    Brain Res; 2019 Nov; 1723():146381. PubMed ID: 31419429
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Individual Differences in Sensory Substitution.
    Arnold G; Pesnot-Lerousseau J; Auvray M
    Multisens Res; 2017 Jan; 30(6):579-600. PubMed ID: 31287085
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interictal perceptual function in epilepsy.
    Grant AC
    Epilepsy Behav; 2005 Jun; 6(4):511-9. PubMed ID: 15907746
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multisensory integration, sensory substitution and visual rehabilitation.
    Proulx MJ; Ptito M; Amedi A
    Neurosci Biobehav Rev; 2014 Apr; 41():1-2. PubMed ID: 24759484
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Selective Enhancement of Object Representations through Multisensory Integration.
    Tovar DA; Murray MM; Wallace MT
    J Neurosci; 2020 Jul; 40(29):5604-5615. PubMed ID: 32499378
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatial Competence and Brain Plasticity in Congenital Blindness via Sensory Substitution Devices.
    Chebat DR; Schneider FC; Ptito M
    Front Neurosci; 2020; 14():815. PubMed ID: 32848575
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Effect of Irrelevant Environmental Noise on the Performance of Visual-to-Auditory Sensory Substitution Devices Used by Blind Adults.
    Buchs G; Heimler B; Amedi A
    Multisens Res; 2019 Jan; 32(2):87-109. PubMed ID: 31059468
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multistability in perception: binding sensory modalities, an overview.
    Schwartz JL; Grimault N; Hupé JM; Moore BC; Pressnitzer D
    Philos Trans R Soc Lond B Biol Sci; 2012 Apr; 367(1591):896-905. PubMed ID: 22371612
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The state of the art of sensory substitution.
    Auvray M; Harris LR
    Multisens Res; 2014; 27(5-6):265-9. PubMed ID: 25693296
    [No Abstract]   [Full Text] [Related]  

  • 33. Set and setting: how behavioral state regulates sensory function and plasticity.
    Aton SJ
    Neurobiol Learn Mem; 2013 Nov; 106():1-10. PubMed ID: 23792020
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Cross-Modal Effects of Sensory Deprivation on Spatial and Temporal Processes in Vision and Audition: A Systematic Review on Behavioral and Neuroimaging Research since 2000.
    Bell L; Wagels L; Neuschaefer-Rube C; Fels J; Gur RE; Konrad K
    Neural Plast; 2019; 2019():9603469. PubMed ID: 31885540
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Use of Vibrotactile Feedback to Restore Texture Recognition Capabilities, and the Effect of Subject Training.
    Motamedi MR; Roberge JP; Duchaine V
    IEEE Trans Neural Syst Rehabil Eng; 2017 Aug; 25(8):1230-1239. PubMed ID: 28113772
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Perception with compensatory devices: from sensory substitution to sensorimotor extension.
    Auvray M; Myin E
    Cogn Sci; 2009 Aug; 33(6):1036-58. PubMed ID: 21585495
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Clinical application of computerized evaluation and re-education biofeedback prototype for sensorimotor control of the hand in stroke patients.
    Hsu HY; Lin CF; Su FC; Kuo HT; Chiu HY; Kuo LC
    J Neuroeng Rehabil; 2012 May; 9():26. PubMed ID: 22571177
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Haptic-assistive technologies for audition and vision sensory disabilities.
    Sorgini F; Caliò R; Carrozza MC; Oddo CM
    Disabil Rehabil Assist Technol; 2018 May; 13(4):394-421. PubMed ID: 29017361
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Length and orientation constancy learning in 2-dimensions with auditory sensory substitution: the importance of self-initiated movement.
    Stiles NR; Zheng Y; Shimojo S
    Front Psychol; 2015; 6():842. PubMed ID: 26136719
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.