These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
558 related articles for article (PubMed ID: 27567855)
1. Specific Binding of Cu(II) Ions to Amyloid-Beta Peptides Bound to Aggregation-Inhibiting Molecules or SDS Micelles Creates Complexes that Generate Radical Oxygen Species. Tiiman A; Luo J; Wallin C; Olsson L; Lindgren J; Jarvet J; Per R; Sholts SB; Rahimipour S; Abrahams JP; Karlström AE; Gräslund A; Wärmländer SK J Alzheimers Dis; 2016 Oct; 54(3):971-982. PubMed ID: 27567855 [TBL] [Abstract][Full Text] [Related]
2. The ongoing search for small molecules to study metal-associated amyloid-β species in Alzheimer's disease. Savelieff MG; DeToma AS; Derrick JS; Lim MH Acc Chem Res; 2014 Aug; 47(8):2475-82. PubMed ID: 25080056 [TBL] [Abstract][Full Text] [Related]
3. Engineered non-fluorescent Affibody molecules facilitate studies of the amyloid-beta (Aβ) peptide in monomeric form: low pH was found to reduce Aβ/Cu(II) binding affinity. Lindgren J; Segerfeldt P; Sholts SB; Gräslund A; Karlström AE; Wärmländer SK J Inorg Biochem; 2013 Mar; 120():18-23. PubMed ID: 23262458 [TBL] [Abstract][Full Text] [Related]
4. Reaction rates and mechanism of the ascorbic acid oxidation by molecular oxygen facilitated by Cu(II)-containing amyloid-beta complexes and aggregates. Jiang D; Li X; Liu L; Yagnik GB; Zhou F J Phys Chem B; 2010 Apr; 114(14):4896-903. PubMed ID: 20302320 [TBL] [Abstract][Full Text] [Related]
5. NMR metabolomic investigation of astrocytes interacted with Aβ₄₂ or its complexes with either copper(II) or zinc(II). Rocchi A; Valensin D; Aldinucci C; Giani G; Barbucci R; Gaggelli E; Kozlowski H; Valensin G J Inorg Biochem; 2012 Dec; 117():326-33. PubMed ID: 23062696 [TBL] [Abstract][Full Text] [Related]
6. Metal ions and intrinsically disordered proteins and peptides: from Cu/Zn amyloid-β to general principles. Faller P; Hureau C; La Penna G Acc Chem Res; 2014 Aug; 47(8):2252-9. PubMed ID: 24871565 [TBL] [Abstract][Full Text] [Related]
7. β-amyloid fibrils in Alzheimer disease are not inert when bound to copper ions but can degrade hydrogen peroxide and generate reactive oxygen species. Mayes J; Tinker-Mill C; Kolosov O; Zhang H; Tabner BJ; Allsop D J Biol Chem; 2014 Apr; 289(17):12052-12062. PubMed ID: 24619420 [TBL] [Abstract][Full Text] [Related]
8. pH-dependence of the specific binding of Cu(II) and Zn(II) ions to the amyloid-β peptide. Ghalebani L; Wahlström A; Danielsson J; Wärmländer SK; Gräslund A Biochem Biophys Res Commun; 2012 May; 421(3):554-60. PubMed ID: 22525674 [TBL] [Abstract][Full Text] [Related]
9. Redox reactions of copper complexes formed with different beta-amyloid peptides and their neuropathological [correction of neuropathalogical] relevance. Jiang D; Men L; Wang J; Zhang Y; Chickenyen S; Wang Y; Zhou F Biochemistry; 2007 Aug; 46(32):9270-82. PubMed ID: 17636872 [TBL] [Abstract][Full Text] [Related]
10. Interactions of Zn(II) and Cu(II) ions with Alzheimer's amyloid-beta peptide. Metal ion binding, contribution to fibrillization and toxicity. Tõugu V; Tiiman A; Palumaa P Metallomics; 2011 Mar; 3(3):250-61. PubMed ID: 21359283 [TBL] [Abstract][Full Text] [Related]
11. Cu and Zn interactions with Aβ peptides: consequence of coordination on aggregation and formation of neurotoxic soluble Aβ oligomers. Rana M; Sharma AK Metallomics; 2019 Jan; 11(1):64-84. PubMed ID: 30234208 [TBL] [Abstract][Full Text] [Related]
12. d-Enantiomeric RTHLVFFARK-NH Liu W; Dong X; Sun Y ACS Chem Neurosci; 2019 Mar; 10(3):1390-1401. PubMed ID: 30650306 [TBL] [Abstract][Full Text] [Related]
13. Effect of metal chelators on the aggregation of beta-amyloid peptides in the presence of copper and iron. Tahmasebinia F; Emadi S Biometals; 2017 Apr; 30(2):285-293. PubMed ID: 28281098 [TBL] [Abstract][Full Text] [Related]
14. Identifying, by first-principles simulations, Cu[amyloid-β] species making Fenton-type reactions in Alzheimer's disease. La Penna G; Hureau C; Andreussi O; Faller P J Phys Chem B; 2013 Dec; 117(51):16455-67. PubMed ID: 24313818 [TBL] [Abstract][Full Text] [Related]
17. Mutual interference of Cu and Zn ions in Alzheimer's disease: perspectives at the molecular level. Atrián-Blasco E; Conte-Daban A; Hureau C Dalton Trans; 2017 Oct; 46(38):12750-12759. PubMed ID: 28937157 [TBL] [Abstract][Full Text] [Related]
18. RTHLVFFARK-NH Meng J; Zhang H; Dong X; Liu F; Sun Y J Inorg Biochem; 2018 Apr; 181():56-64. PubMed ID: 29407908 [TBL] [Abstract][Full Text] [Related]
19. Metal binding to the amyloid-β peptides in the presence of biomembranes: potential mechanisms of cell toxicity. Wärmländer SKTS; Österlund N; Wallin C; Wu J; Luo J; Tiiman A; Jarvet J; Gräslund A J Biol Inorg Chem; 2019 Dec; 24(8):1189-1196. PubMed ID: 31562546 [TBL] [Abstract][Full Text] [Related]
20. Mechanistic Insight into the Design of Chemical Tools to Control Multiple Pathogenic Features in Alzheimer's Disease. Han J; Du Z; Lim MH Acc Chem Res; 2021 Oct; 54(20):3930-3940. PubMed ID: 34606227 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]