These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
293 related articles for article (PubMed ID: 27567899)
81. Cell Invasion and Matricide during Photorhabdus luminescens Transmission by Heterorhabditis bacteriophora Nematodes. Ciche TA; Kim KS; Kaufmann-Daszczuk B; Nguyen KC; Hall DH Appl Environ Microbiol; 2008 Apr; 74(8):2275-87. PubMed ID: 18281425 [TBL] [Abstract][Full Text] [Related]
82. Differences between the pathogenic processes induced by Steinernema and Heterorhabditis (Nemata: Rhabditida) in Pseudaletia unipuncta (Insecta: Lepidoptera). Rosa JS; Cabral C; Simões N J Invertebr Pathol; 2002 May; 80(1):46-54. PubMed ID: 12234542 [TBL] [Abstract][Full Text] [Related]
83. Differential Change Patterns of Main Antimicrobial Peptide Genes During Infection of Entomopathogenic Nematodes and Their Symbiotic Bacteria. Darsouei R; Karimi J; Ghadamyari M; Hosseini M J Parasitol; 2017 Aug; 103(4):349-358. PubMed ID: 28395586 [TBL] [Abstract][Full Text] [Related]
84. Isolation, identification, and molecular characterization of strains of Photorhabdus luminescens from infected humans in Australia. Peel MM; Alfredson DA; Gerrard JG; Davis JM; Robson JM; McDougall RJ; Scullie BL; Akhurst RJ J Clin Microbiol; 1999 Nov; 37(11):3647-53. PubMed ID: 10523568 [TBL] [Abstract][Full Text] [Related]
85. Changes in Caenorhabditis elegans gene expression following exposure to Photorhabdus luminescens strain TT01. Hoinville ME; Wollenberg AC Dev Comp Immunol; 2018 May; 82():165-176. PubMed ID: 29203330 [TBL] [Abstract][Full Text] [Related]
86. Pathogenicity, development, and reproduction of Heterorhabditis bacteriophora and Steinernema carpocapsae under axenic in vivo conditions. Han R; Ehlers RU J Invertebr Pathol; 2000 Jan; 75(1):55-8. PubMed ID: 10631058 [TBL] [Abstract][Full Text] [Related]
87. Identification and characterization of a novel gene involved in the trans-specific nematicidal activity of Photorhabdus luminescens LN2. Qiu X; Han R; Yan X; Liu M; Cao L; Yoshiga T; Kondo E Appl Environ Microbiol; 2009 Jun; 75(12):4221-3. PubMed ID: 19376907 [TBL] [Abstract][Full Text] [Related]
88. Monitoring the Photorhabdus spp. bacterial load in Heterorhabditis bacteriophora dauer juveniles over different storage times and temperatures: A molecular approach. Ogaya C; Huong N; Touceda-González M; Barg M; Dörfler V; Ehlers RU; Molina C J Invertebr Pathol; 2024 Mar; 203():108048. PubMed ID: 38159796 [TBL] [Abstract][Full Text] [Related]
89. Entomopathogenic Nematodes and Their Symbiotic Bacteria from the National Parks of Thailand and Larvicidal Property of Symbiotic Bacteria against Thanwisai A; Muangpat P; Meesil W; Janthu P; Dumidae A; Subkrasae C; Ardpairin J; Tandhavanant S; Yoshino TP; Vitta A Biology (Basel); 2022 Nov; 11(11):. PubMed ID: 36421372 [TBL] [Abstract][Full Text] [Related]
90. Involvement of Vitamin B6 Biosynthesis Pathways in the Insecticidal Activity of Photorhabdus luminescens. Sato K; Yoshiga T; Hasegawa K Appl Environ Microbiol; 2016 Jun; 82(12):3546-3553. PubMed ID: 27060119 [TBL] [Abstract][Full Text] [Related]
91. Kenney E; Hawdon JM; O'Halloran D; Eleftherianos I Front Immunol; 2019; 10():2372. PubMed ID: 31636642 [TBL] [Abstract][Full Text] [Related]
92. The lumicins: novel bacteriocins from Photorhabdus luminescens with similarity to the uropathogenic-specific protein (USP) from uropathogenic Escherichia coli. Sharma S; Waterfield N; Bowen D; Rocheleau T; Holland L; James R; ffrench-Constant R FEMS Microbiol Lett; 2002 Sep; 214(2):241-9. PubMed ID: 12351238 [TBL] [Abstract][Full Text] [Related]
93. The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Duchaud E; Rusniok C; Frangeul L; Buchrieser C; Givaudan A; Taourit S; Bocs S; Boursaux-Eude C; Chandler M; Charles JF; Dassa E; Derose R; Derzelle S; Freyssinet G; Gaudriault S; Médigue C; Lanois A; Powell K; Siguier P; Vincent R; Wingate V; Zouine M; Glaser P; Boemare N; Danchin A; Kunst F Nat Biotechnol; 2003 Nov; 21(11):1307-13. PubMed ID: 14528314 [TBL] [Abstract][Full Text] [Related]
94. The gene stlA encodes a phenylalanine ammonia-lyase that is involved in the production of a stilbene antibiotic in Photorhabdus luminescens TT01. Williams JS; Thomas M; Clarke DJ Microbiology (Reading); 2005 Aug; 151(Pt 8):2543-2550. PubMed ID: 16079333 [TBL] [Abstract][Full Text] [Related]
95. Effect of agitation speed on the density of bacteria Tumialis D; Mazurkiewicz A; Skrzecz I J Helminthol; 2021 Sep; 95():e54. PubMed ID: 34505559 [TBL] [Abstract][Full Text] [Related]
97. Identification and characterization of a novel L-amino acid ligase from Photorhabdus luminescens subsp. laumondii TT01. Kino K; Noguchi A; Arai T; Yagasaki M J Biosci Bioeng; 2010 Jul; 110(1):39-41. PubMed ID: 20541113 [TBL] [Abstract][Full Text] [Related]
98. Bacteria from the Midgut of Common Cockchafer ( Skowronek M; Sajnaga E; Pleszczyńska M; Kazimierczak W; Lis M; Wiater A Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31963214 [TBL] [Abstract][Full Text] [Related]
99. Biological control of Phlebotomus papatasi larvae by using entomopathogenic nematodes and its symbiotic bacterial toxins. El-Sadawy HA; Ramadan MY; Abdel Megeed KN; Ali HH; El Sattar SA; Elakabawy LM Trop Biomed; 2020 Jun; 37(2):288-302. PubMed ID: 33612799 [TBL] [Abstract][Full Text] [Related]
100. Stability of entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus luminescens, during in vitro culture. Wang Y; Bilgrami AL; Shapiro-Ilan D; Gaugler R J Ind Microbiol Biotechnol; 2007 Jan; 34(1):73-81. PubMed ID: 16941119 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]