BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 27567934)

  • 1. Utilizing metal tolerance potential of soil fungus for efficient synthesis of gold nanoparticles with superior catalytic activity for degradation of rhodamine B.
    Bhargava A; Jain N; Khan MA; Pareek V; Dilip RV; Panwar J
    J Environ Manage; 2016 Dec; 183():22-32. PubMed ID: 27567934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biogenic synthesis of gold nanoparticles and their application in photocatalytic degradation of toxic dyes.
    Baruah D; Goswami M; Yadav RNS; Yadav A; Das AM
    J Photochem Photobiol B; 2018 Sep; 186():51-58. PubMed ID: 30015060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biorecovery of gold as nanoparticles and its catalytic activities for p-nitrophenol degradation.
    Zhu N; Cao Y; Shi C; Wu P; Ma H
    Environ Sci Pollut Res Int; 2016 Apr; 23(8):7627-38. PubMed ID: 26739993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. α-Helical Peptide-Gold Nanoparticle Hybrids: Synthesis, Characterization, and Catalytic Activity.
    Tomizaki KY; Yamaguchi Y; Tsukamoto N; Imai T
    Protein Pept Lett; 2018; 25(1):56-63. PubMed ID: 29237364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracellular facile biosynthesis, characterization and stability of gold nanoparticles by Bacillus licheniformis.
    Singh S; Vidyarthi AS; Nigam VK; Dev A
    Artif Cells Nanomed Biotechnol; 2014 Feb; 42(1):6-12. PubMed ID: 23438180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photocatalytic and antibacterial activities of gold and silver nanoparticles synthesized using biomass of Parkia roxburghii leaf.
    Paul B; Bhuyan B; Purkayastha DD; Dhar SS
    J Photochem Photobiol B; 2016 Jan; 154():1-7. PubMed ID: 26590801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic reduction of 4-nitrophenol using gold nanoparticles biosynthesized by cell-free extracts of Aspergillus sp. WL-Au.
    Shen W; Qu Y; Pei X; Li S; You S; Wang J; Zhang Z; Zhou J
    J Hazard Mater; 2017 Jan; 321():299-306. PubMed ID: 27637096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA hydrogel as a template for synthesis of ultrasmall gold nanoparticles for catalytic applications.
    Zinchenko A; Miwa Y; Lopatina LI; Sergeyev VG; Murata S
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3226-32. PubMed ID: 24533931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zinc-oxide-silica-silver nanocomposite: Unique one-pot synthesis and enhanced catalytic and anti-bacterial performance.
    Kokate M; Garadkar K; Gole A
    J Colloid Interface Sci; 2016 Dec; 483():249-260. PubMed ID: 27560497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sodium borohydride stabilizes very active gold nanoparticle catalysts.
    Deraedt C; Salmon L; Gatard S; Ciganda R; Hernandez R; Ruiz J; Astruc D
    Chem Commun (Camb); 2014 Nov; 50(91):14194-6. PubMed ID: 25283248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile one-pot synthesis of gold and silver nanocatalysts using edible coconut oil.
    Meena Kumari M; Philip D
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Jul; 111():154-60. PubMed ID: 23624042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic reduction of 4-nitrophenol using biogenic gold and silver nanoparticles derived from Breynia rhamnoides.
    Gangula A; Podila R; M R; Karanam L; Janardhana C; Rao AM
    Langmuir; 2011 Dec; 27(24):15268-74. PubMed ID: 22026721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic reduction of 4-nitrophenol and photo inhibition of Pseudomonas aeruginosa using gold nanoparticles as photocatalyst.
    Khan S; Runguo W; Tahir K; Jichuan Z; Zhang L
    J Photochem Photobiol B; 2017 May; 170():181-187. PubMed ID: 28437746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly stable, protein capped gold nanoparticles as effective drug delivery vehicles for amino-glycosidic antibiotics.
    Rastogi L; Kora AJ; J A
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1571-7. PubMed ID: 24364962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrospun nanofibers decorated with bio-sonochemically synthesized gold nanoparticles as an ultrasensitive probe in amalgam-based mercury (II) detection system.
    Parsaee Z
    Ultrason Sonochem; 2018 Jun; 44():24-35. PubMed ID: 29680608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phoenix dactylifera L. leaf extract phytosynthesized gold nanoparticles; controlled synthesis and catalytic activity.
    Zayed MF; Eisa WH
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():238-44. PubMed ID: 24247096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and characterization of nano-gold composite using Cylindrocladium floridanum and its heterogeneous catalysis in the degradation of 4-nitrophenol.
    Narayanan KB; Sakthivel N
    J Hazard Mater; 2011 May; 189(1-2):519-25. PubMed ID: 21420237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Green synthesis of gold nanoparticles using Trigonella foenum-graecum and its size-dependent catalytic activity.
    Aswathy Aromal S; Philip D
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Nov; 97():1-5. PubMed ID: 22743607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytosynthesis of intracellular and extracellular gold nanoparticles by living peanut plant (Arachis hypogaea L.).
    Raju D; Mehta UJ; Ahmad A
    Biotechnol Appl Biochem; 2012; 59(6):471-8. PubMed ID: 23586957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fungus-mediated synthesis of gold nanoparticles and standardization of parameters for its biosynthesis.
    Tidke PR; Gupta I; Gade AK; Rai M
    IEEE Trans Nanobioscience; 2014 Dec; 13(4):397-402. PubMed ID: 25163069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.