These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Substrate Hunting for the Myxobacterial CYP260A1 Revealed New 1α-Hydroxylated Products from C-19 Steroids. Khatri Y; Ringle M; Lisurek M; von Kries JP; Zapp J; Bernhardt R Chembiochem; 2016 Jan; 17(1):90-101. PubMed ID: 26478560 [TBL] [Abstract][Full Text] [Related]
3. Structural characterization of CYP260A1 from Sorangium cellulosum to investigate the 1α-hydroxylation of a mineralocorticoid. Khatri Y; Carius Y; Ringle M; Lancaster CR; Bernhardt R FEBS Lett; 2016 Dec; 590(24):4638-4648. PubMed ID: 27878817 [TBL] [Abstract][Full Text] [Related]
4. New Sesquiterpene Oxidations with CYP260A1 and CYP264B1 from Sorangium cellulosum So ce56. Schifrin A; Litzenburger M; Ringle M; Ly TT; Bernhardt R Chembiochem; 2015 Dec; 16(18):2624-32. PubMed ID: 26449371 [TBL] [Abstract][Full Text] [Related]
5. Structure-Based Engineering of Steroidogenic CYP260A1 for Stereo- and Regioselective Hydroxylation of Progesterone. Khatri Y; Jóźwik IK; Ringle M; Ionescu IA; Litzenburger M; Hutter MC; Thunnissen AWH; Bernhardt R ACS Chem Biol; 2018 Apr; 13(4):1021-1028. PubMed ID: 29509407 [TBL] [Abstract][Full Text] [Related]
6. A natural heme-signature variant of CYP267A1 from Sorangium cellulosum So ce56 executes diverse ω-hydroxylation. Khatri Y; Hannemann F; Girhard M; Kappl R; Hutter M; Urlacher VB; Bernhardt R FEBS J; 2015 Jan; 282(1):74-88. PubMed ID: 25302415 [TBL] [Abstract][Full Text] [Related]
8. The CYPome of Sorangium cellulosum So ce56 and identification of CYP109D1 as a new fatty acid hydroxylase. Khatri Y; Hannemann F; Ewen KM; Pistorius D; Perlova O; Kagawa N; Brachmann AO; Müller R; Bernhardt R Chem Biol; 2010 Dec; 17(12):1295-305. PubMed ID: 21168765 [TBL] [Abstract][Full Text] [Related]
9. Novel family members of CYP109 from Sorangium cellulosum So ce56 exhibit characteristic biochemical and biophysical properties. Khatri Y; Hannemann F; Girhard M; Kappl R; Même A; Ringle M; Janocha S; Leize-Wagner E; Urlacher VB; Bernhardt R Biotechnol Appl Biochem; 2013; 60(1):18-29. PubMed ID: 23586989 [TBL] [Abstract][Full Text] [Related]
10. Structural insights into oxidation of medium-chain fatty acids and flavanone by myxobacterial cytochrome P450 CYP267B1. Jóźwik IK; Litzenburger M; Khatri Y; Schifrin A; Girhard M; Urlacher V; Thunnissen AWH; Bernhardt R Biochem J; 2018 Sep; 475(17):2801-2817. PubMed ID: 30045877 [TBL] [Abstract][Full Text] [Related]
11. [Nanoelectrochemistry of cytochrome P450s: direct electron transfer and electrocatalysis]. Shumiantseva VV; Bulko TV; Rudakov IuO; Samenkova NF; Lisitsa AV; Karuzina II; Archakov AI Biomed Khim; 2006; 52(5):458-68. PubMed ID: 17180920 [TBL] [Abstract][Full Text] [Related]
12. [Screening of potential substrates or inhibitors of cytochrome P450 17A1 (CYP17A1) by electrochemical methods]. Shumiantseva VV; Bulko TV; Misharin AIu; Archakov AA Biomed Khim; 2011; 57(4):402-9. PubMed ID: 22066265 [TBL] [Abstract][Full Text] [Related]
13. Regioselective hydroxylation of norisoprenoids by CYP109D1 from Sorangium cellulosum So ce56. Khatri Y; Girhard M; Romankiewicz A; Ringle M; Hannemann F; Urlacher VB; Hutter MC; Bernhardt R Appl Microbiol Biotechnol; 2010 Sep; 88(2):485-95. PubMed ID: 20645086 [TBL] [Abstract][Full Text] [Related]
14. CYP264B1 from Sorangium cellulosum So ce56: a fascinating norisoprenoid and sesquiterpene hydroxylase. Ly TT; Khatri Y; Zapp J; Hutter MC; Bernhardt R Appl Microbiol Biotechnol; 2012 Jul; 95(1):123-33. PubMed ID: 22223101 [TBL] [Abstract][Full Text] [Related]
15. Genome mining in Sorangium cellulosum So ce56: identification and characterization of the homologous electron transfer proteins of a myxobacterial cytochrome P450. Ewen KM; Hannemann F; Khatri Y; Perlova O; Kappl R; Krug D; Hüttermann J; Müller R; Bernhardt R J Biol Chem; 2009 Oct; 284(42):28590-8. PubMed ID: 19696019 [TBL] [Abstract][Full Text] [Related]
16. Direct electrochemistry of Phanerochaete chrysosporium cellobiose dehydrogenase covalently attached onto gold nanoparticle modified solid gold electrodes. Matsumura H; Ortiz R; Ludwig R; Igarashi K; Samejima M; Gorton L Langmuir; 2012 Jul; 28(29):10925-33. PubMed ID: 22746277 [TBL] [Abstract][Full Text] [Related]
17. Direct electrochemistry and electrocatalysis of cytochrome c immobilized on gold nanoparticles-chitosan-carbon nanotubes-modified electrode. Xiang C; Zou Y; Sun LX; Xu F Talanta; 2007 Nov; 74(2):206-11. PubMed ID: 18371631 [TBL] [Abstract][Full Text] [Related]
18. [Electrochemical measurement of intraprorein and interprotein electron transfer]. Shumiantseva VV; Bulko TV; Lisitsina VB; Urlakher VB; Kuzikov AB; Suprun EV; Archakov AI Biofizika; 2013; 58(3):453-60. PubMed ID: 24159813 [TBL] [Abstract][Full Text] [Related]
19. Characterization and engineering of a novel pyrroloquinoline quinone dependent glucose dehydrogenase from Sorangium cellulosum So ce56. Hofer M; Bönsch K; Greiner-Stöffele T; Ballschmiter M Mol Biotechnol; 2011 Mar; 47(3):253-61. PubMed ID: 20886312 [TBL] [Abstract][Full Text] [Related]
20. In situ synthesized gold nanoparticles for direct electrochemistry of horseradish peroxidase. Wan Q; Song H; Shu H; Wang Z; Zou J; Yang N Colloids Surf B Biointerfaces; 2013 Apr; 104():181-5. PubMed ID: 23314493 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]