These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 27568058)
1. Low-intensity repetitive magnetic stimulation lowers action potential threshold and increases spike firing in layer 5 pyramidal neurons in vitro. Tang AD; Hong I; Boddington LJ; Garrett AR; Etherington S; Reynolds JN; Rodger J Neuroscience; 2016 Oct; 335():64-71. PubMed ID: 27568058 [TBL] [Abstract][Full Text] [Related]
2. Repetitive transcranial magnetic stimulation increases excitability of hippocampal CA1 pyramidal neurons. Tan T; Xie J; Tong Z; Liu T; Chen X; Tian X Brain Res; 2013 Jul; 1520():23-35. PubMed ID: 23651978 [TBL] [Abstract][Full Text] [Related]
3. Repetitive magnetic stimulation induces plasticity of excitatory postsynapses on proximal dendrites of cultured mouse CA1 pyramidal neurons. Lenz M; Platschek S; Priesemann V; Becker D; Willems LM; Ziemann U; Deller T; Müller-Dahlhaus F; Jedlicka P; Vlachos A Brain Struct Funct; 2015 Nov; 220(6):3323-37. PubMed ID: 25108309 [TBL] [Abstract][Full Text] [Related]
4. Repeated transcranial magnetic stimulation prevents kindling-induced changes in electrophysiological properties of rat hippocampal CA1 pyramidal neurons. Shojaei A; Semnanian S; Janahmadi M; Moradi-Chameh H; Firoozabadi SM; Mirnajafi-Zadeh J Neuroscience; 2014 Nov; 280():181-92. PubMed ID: 25241070 [TBL] [Abstract][Full Text] [Related]
5. Chronic high-frequency repetitive transcranial magnetic stimulation improves age-related cognitive impairment in parallel with alterations in neuronal excitability and the voltage-dependent Ca2+ current in female mice. Wang HL; Xian XH; Wang YY; Geng Y; Han B; Wang MW; Li WB Neurobiol Learn Mem; 2015 Feb; 118():1-7. PubMed ID: 25451310 [TBL] [Abstract][Full Text] [Related]
6. Layer I neurons of rat neocortex. I. Action potential and repetitive firing properties. Zhou FM; Hablitz JJ J Neurophysiol; 1996 Aug; 76(2):651-67. PubMed ID: 8871189 [TBL] [Abstract][Full Text] [Related]
7. In vivo low-intensity magnetic pulses durably alter neocortical neuron excitability and spontaneous activity. Boyer M; Baudin P; Stengel C; Valero-Cabré A; Lohof AM; Charpier S; Sherrard RM; Mahon S J Physiol; 2022 Sep; 600(17):4019-4037. PubMed ID: 35899578 [TBL] [Abstract][Full Text] [Related]
8. Effect of low frequency repetitive transcranial magnetic stimulation on kindling-induced changes in electrophysiological properties of rat CA1 pyramidal neurons. Moradi Chameh H; Janahmadi M; Semnanian S; Shojaei A; Mirnajafi-Zadeh J Brain Res; 2015 May; 1606():34-43. PubMed ID: 25721786 [TBL] [Abstract][Full Text] [Related]
9. Intermittent Theta-Burst Transcranial Magnetic Stimulation Alters Electrical Properties of Fast-Spiking Neocortical Interneurons in an Age-Dependent Fashion. Hoppenrath K; Härtig W; Funke K Front Neural Circuits; 2016; 10():22. PubMed ID: 27065812 [TBL] [Abstract][Full Text] [Related]
10. Cellular and molecular changes to cortical neurons following low intensity repetitive magnetic stimulation at different frequencies. Grehl S; Viola HM; Fuller-Carter PI; Carter KW; Dunlop SA; Hool LC; Sherrard RM; Rodger J Brain Stimul; 2015; 8(1):114-23. PubMed ID: 25444593 [TBL] [Abstract][Full Text] [Related]
11. Subthreshold repetitive transcranial magnetic stimulation drives structural synaptic plasticity in the young and aged motor cortex. Tang AD; Bennett W; Bindoff AD; Bolland S; Collins J; Langley RC; Garry MI; Summers JJ; Hinder MR; Rodger J; Canty AJ Brain Stimul; 2021; 14(6):1498-1507. PubMed ID: 34653682 [TBL] [Abstract][Full Text] [Related]
12. Repetitive magnetic stimulation induces functional and structural plasticity of excitatory postsynapses in mouse organotypic hippocampal slice cultures. Vlachos A; Müller-Dahlhaus F; Rosskopp J; Lenz M; Ziemann U; Deller T J Neurosci; 2012 Nov; 32(48):17514-23. PubMed ID: 23197741 [TBL] [Abstract][Full Text] [Related]
14. Short-term and long-term plasticity interaction in human primary motor cortex. Iezzi E; Suppa A; Conte A; Li Voti P; Bologna M; Berardelli A Eur J Neurosci; 2011 May; 33(10):1908-15. PubMed ID: 21488986 [TBL] [Abstract][Full Text] [Related]
15. Repetitive transcranial magnetic stimulation recovers cortical map plasticity induced by sensory deprivation due to deafferentiation. Kloosterboer E; Funke K J Physiol; 2019 Aug; 597(15):4025-4051. PubMed ID: 31145483 [TBL] [Abstract][Full Text] [Related]
16. Cav1.2 calcium channels modulate the spiking pattern of hippocampal pyramidal cells. Lacinova L; Moosmang S; Langwieser N; Hofmann F; Kleppisch T Life Sci; 2008 Jan; 82(1-2):41-9. PubMed ID: 18045623 [TBL] [Abstract][Full Text] [Related]
17. Spike-dependent intrinsic plasticity increases firing probability in rat striatal neurons in vivo. Mahon S; Casassus G; Mulle C; Charpier S J Physiol; 2003 Aug; 550(Pt 3):947-59. PubMed ID: 12844508 [TBL] [Abstract][Full Text] [Related]
18. Immediate Effects of Repetitive Magnetic Stimulation on Single Cortical Pyramidal Neurons. Banerjee J; Sorrell ME; Celnik PA; Pelled G PLoS One; 2017; 12(1):e0170528. PubMed ID: 28114421 [TBL] [Abstract][Full Text] [Related]
19. Stability and plasticity of intrinsic membrane properties in hippocampal CA1 pyramidal neurons: effects of internal anions. Kaczorowski CC; Disterhoft J; Spruston N J Physiol; 2007 Feb; 578(Pt 3):799-818. PubMed ID: 17138601 [TBL] [Abstract][Full Text] [Related]
20. Propofol-induced spike firing suppression is more pronounced in pyramidal neurons than in fast-spiking neurons in the rat insular cortex. Kaneko K; Koyanagi Y; Oi Y; Kobayashi M Neuroscience; 2016 Dec; 339():548-560. PubMed ID: 27746347 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]