BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 27568222)

  • 1. Transgenic Adipose-specific Expression of the Nuclear Receptor RORα Drives a Striking Shift in Fat Distribution and Impairs Glycemic Control.
    Tuong ZK; Fitzsimmons R; Wang SM; Oh TG; Lau P; Steyn F; Thomas G; Muscat GEO
    EBioMedicine; 2016 Sep; 11():101-117. PubMed ID: 27568222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liver-specific RORα deletion does not affect the metabolic susceptibility to western style diet feeding.
    Molinaro A; Caesar R; L'homme L; Koh A; Ståhlman M; Staels B; Bäckhed F
    Mol Metab; 2019 May; 23():82-87. PubMed ID: 30904385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The nuclear retinoid-related orphan receptor-α regulates adipose tissue glyceroneogenesis in addition to hepatic gluconeogenesis.
    Kadiri S; Monnier C; Ganbold M; Ledent T; Capeau J; Antoine B
    Am J Physiol Endocrinol Metab; 2015 Jul; 309(2):E105-14. PubMed ID: 26015436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The orphan nuclear receptor, RORalpha, regulates gene expression that controls lipid metabolism: staggerer (SG/SG) mice are resistant to diet-induced obesity.
    Lau P; Fitzsimmons RL; Raichur S; Wang SC; Lechtken A; Muscat GE
    J Biol Chem; 2008 Jun; 283(26):18411-21. PubMed ID: 18441015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RORα controls hepatic lipid homeostasis via negative regulation of PPARγ transcriptional network.
    Kim K; Boo K; Yu YS; Oh SK; Kim H; Jeon Y; Bhin J; Hwang D; Kim KI; Lee JS; Im SS; Yoon SG; Kim IY; Seong JK; Lee H; Fang S; Baek SH
    Nat Commun; 2017 Jul; 8(1):162. PubMed ID: 28757615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional profiling reveals a role for RORalpha in regulating gene expression in obesity-associated inflammation and hepatic steatosis.
    Kang HS; Okamoto K; Takeda Y; Beak JY; Gerrish K; Bortner CD; DeGraff LM; Wada T; Xie W; Jetten AM
    Physiol Genomics; 2011 Jul; 43(13):818-28. PubMed ID: 21540300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peri-conceptional obesogenic exposure induces sex-specific programming of disease susceptibilities in adult mouse offspring.
    Dahlhoff M; Pfister S; Blutke A; Rozman J; Klingenspor M; Deutsch MJ; Rathkolb B; Fink B; Gimpfl M; Hrabě de Angelis M; Roscher AA; Wolf E; Ensenauer R
    Biochim Biophys Acta; 2014 Feb; 1842(2):304-17. PubMed ID: 24275555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HMGA1 overexpression in adipose tissue impairs adipogenesis and prevents diet-induced obesity and insulin resistance.
    Arce-Cerezo A; García M; Rodríguez-Nuevo A; Crosa-Bonell M; Enguix N; Peró A; Muñoz S; Roca C; Ramos D; Franckhauser S; Elias I; Ferre T; Pujol A; Ruberte J; Villena JA; Bosch F; Riu E
    Sci Rep; 2015 Sep; 5():14487. PubMed ID: 26411793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-fat diet action on adiposity, inflammation, and insulin sensitivity depends on the control low-fat diet.
    Benoit B; Plaisancié P; Awada M; Géloën A; Estienne M; Capel F; Malpuech-Brugère C; Debard C; Pesenti S; Morio B; Vidal H; Rieusset J; Michalski MC
    Nutr Res; 2013 Nov; 33(11):952-60. PubMed ID: 24176235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuclear receptor retinoid-related orphan receptor α deficiency exacerbates high-fat diet-induced cardiac dysfunction despite improving metabolic abnormality.
    Zhao YC; Xu LW; Ding S; Ji QQ; Lin N; He Q; Gao LC; Su YY; Pu J; He B
    Biochim Biophys Acta Mol Basis Dis; 2017 Aug; 1863(8):1991-2000. PubMed ID: 27825849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-fat diet leads to tissue-specific changes reflecting risk factors for diseases in DBA/2J mice.
    Hageman RS; Wagener A; Hantschel C; Svenson KL; Churchill GA; Brockmann GA
    Physiol Genomics; 2010 Jun; 42(1):55-66. PubMed ID: 20215417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hepatic PTEN deficiency improves muscle insulin sensitivity and decreases adiposity in mice.
    Peyrou M; Bourgoin L; Poher AL; Altirriba J; Maeder C; Caillon A; Fournier M; Montet X; Rohner-Jeanrenaud F; Foti M
    J Hepatol; 2015 Feb; 62(2):421-9. PubMed ID: 25234947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in adiponectin and inflammatory genes in response to hormonal imbalances in female mice and exacerbation of depot selective visceral adiposity by high-fat diet: implications for insulin resistance.
    Zhang H; Chen X; Aravindakshan J; Sairam MR
    Endocrinology; 2007 Dec; 148(12):5667-79. PubMed ID: 17717050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human C-reactive protein exacerbates metabolic disorders in association with adipose tissue remodelling.
    Kaneko H; Anzai T; Nagai T; Anzai A; Takahashi T; Mano Y; Morimoto K; Maekawa Y; Itoh H; Yoshikawa T; Ogawa S; Fukuda K
    Cardiovasc Res; 2011 Aug; 91(3):546-55. PubMed ID: 21447704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lysosomal acid lipase-deficient mice: depletion of white and brown fat, severe hepatosplenomegaly, and shortened life span.
    Du H; Heur M; Duanmu M; Grabowski GA; Hui DY; Witte DP; Mishra J
    J Lipid Res; 2001 Apr; 42(4):489-500. PubMed ID: 11290820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FABP4-Cre Mediated Expression of Constitutively Active ChREBP Protects Against Obesity, Fatty Liver, and Insulin Resistance.
    Nuotio-Antar AM; Poungvarin N; Li M; Schupp M; Mohammad M; Gerard S; Zou F; Chan L
    Endocrinology; 2015 Nov; 156(11):4020-32. PubMed ID: 26248218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lack of the Lysosomal Membrane Protein, GLMP, in Mice Results in Metabolic Dysregulation in Liver.
    Kong XY; Kase ET; Herskedal A; Schjalm C; Damme M; Nesset CK; Thoresen GH; Rustan AC; Eskild W
    PLoS One; 2015; 10(6):e0129402. PubMed ID: 26047317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coordinated improvement in glucose tolerance, liver steatosis and obesity-associated inflammation by cannabinoid 1 receptor antagonism in fat Aussie mice.
    Bell-Anderson KS; Aouad L; Williams H; Sanz FR; Phuyal J; Larter CZ; Farrell GC; Caterson ID
    Int J Obes (Lond); 2011 Dec; 35(12):1539-48. PubMed ID: 21386801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic phenotype and adipose and liver features in a high-fat Western diet-induced mouse model of obesity-linked NAFLD.
    Luo Y; Burrington CM; Graff EC; Zhang J; Judd RL; Suksaranjit P; Kaewpoowat Q; Davenport SK; O'Neill AM; Greene MW
    Am J Physiol Endocrinol Metab; 2016 Mar; 310(6):E418-39. PubMed ID: 26670487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-fat diet decreases energy expenditure and expression of genes controlling lipid metabolism, mitochondrial function and skeletal system development in the adipose tissue, along with increased expression of extracellular matrix remodelling- and inflammation-related genes.
    Choi MS; Kim YJ; Kwon EY; Ryoo JY; Kim SR; Jung UJ
    Br J Nutr; 2015 Mar; 113(6):867-77. PubMed ID: 25744306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.