These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Presence of Pseudomonas aeruginosa influences biofilm formation and surface protein expression of Staphylococcus aureus. Kumar A; Ting YP Environ Microbiol; 2015 Nov; 17(11):4459-68. PubMed ID: 25925222 [TBL] [Abstract][Full Text] [Related]
3. Initial bacterial attachment in slow flowing systems: effects of cell and substrate surface properties. Wang H; Sodagari M; Chen Y; He X; Newby BM; Ju LK Colloids Surf B Biointerfaces; 2011 Oct; 87(2):415-22. PubMed ID: 21715146 [TBL] [Abstract][Full Text] [Related]
4. Effect of sub-inhibitory antibacterial stress on bacterial surface properties and biofilm formation. Kumar A; Ting YP Colloids Surf B Biointerfaces; 2013 Nov; 111():747-54. PubMed ID: 23934235 [TBL] [Abstract][Full Text] [Related]
5. Effects of shear on initial bacterial attachment in slow flowing systems. Wang H; Sodagari M; Ju LK; Zhang Newby BM Colloids Surf B Biointerfaces; 2013 Sep; 109():32-9. PubMed ID: 23603040 [TBL] [Abstract][Full Text] [Related]
6. Extracellular protease in Actinomycetes culture supernatants inhibits and detaches Staphylococcus aureus biofilm formation. Park JH; Lee JH; Kim CJ; Lee JC; Cho MH; Lee J Biotechnol Lett; 2012 Apr; 34(4):655-61. PubMed ID: 22160331 [TBL] [Abstract][Full Text] [Related]
7. Molybdenum Disulfide Surfaces to Reduce Amin M; Rowley-Neale S; Shalamanova L; Lynch S; Wilson-Nieuwenhuis JT; El Mohtadi M; Banks CE; Whitehead KA ACS Appl Mater Interfaces; 2020 May; 12(18):21057-21069. PubMed ID: 32289218 [TBL] [Abstract][Full Text] [Related]
8. Acceleration of protease effect on Staphylococcus aureus biofilm dispersal. Park JH; Lee JH; Cho MH; Herzberg M; Lee J FEMS Microbiol Lett; 2012 Oct; 335(1):31-8. PubMed ID: 22784033 [TBL] [Abstract][Full Text] [Related]
9. Characterisation and in vitro activities of surface attached dihydropyrrol-2-ones against Gram-negative and Gram-positive bacteria. Ho KK; Cole N; Chen R; Willcox MD; Rice SA; Kumar N Biofouling; 2010 Nov; 26(8):913-21. PubMed ID: 21038151 [TBL] [Abstract][Full Text] [Related]
10. The ionic liquid 1-alkyl-3-methylimidazolium demonstrates comparable antimicrobial and antibiofilm behavior to a cationic surfactant. Venkata Nancharaiah Y; Reddy GK; Lalithamanasa P; Venugopalan VP Biofouling; 2012; 28(10):1141-9. PubMed ID: 23092364 [TBL] [Abstract][Full Text] [Related]
11. Reduced bacterial deposition and attachment by quorum-sensing inhibitor 4-nitro-pyridine-N-oxide: the role of physicochemical effects. Vanoyan N; Walker SL; Gillor O; Herzberg M Langmuir; 2010 Jul; 26(14):12089-94. PubMed ID: 20553026 [TBL] [Abstract][Full Text] [Related]
12. New commercial wipes inhibit the dispersion and adhesion of Staphylococcus aureus and Pseudomonas aeruginosa biofilms. Di Fermo P; Diban F; Ancarani E; Yu K; D'Arcangelo S; D'Ercole S; Di Lodovico S; Di Giulio M; Cellini L J Appl Microbiol; 2024 Sep; 135(9):. PubMed ID: 39270663 [TBL] [Abstract][Full Text] [Related]
13. In vitro production of biofilm in a flow cell system in a strain of Pseudomonas aeruginosa and Staphylococcus aureus and determination of efficiency of ciprofloxacin against them. Gupta S; Agarwal S; Sahoo DR; Muralidharan S Indian J Pathol Microbiol; 2011; 54(3):569-71. PubMed ID: 21934223 [TBL] [Abstract][Full Text] [Related]
14. Subinhibitory concentrations of phenyl lactic acid interfere with the expression of virulence factors in Staphylococcus aureus and Pseudomonas aeruginosa clinical strains. Chifiriuc MC; Diţu LM; Banu O; Bleotu C; Drăcea O; Bucur M; Larion C; Israil AM; Lazăr V Roum Arch Microbiol Immunol; 2009; 68(1):27-33. PubMed ID: 19507624 [TBL] [Abstract][Full Text] [Related]
15. Bacteria competing with the adhesion and biofilm formation by Staphylococcus aureus. Sadowska B; Walencka E; Wieckowska-Szakiel M; Różalska B Folia Microbiol (Praha); 2010 Sep; 55(5):497-501. PubMed ID: 20941586 [TBL] [Abstract][Full Text] [Related]
16. Anti-biofilm formation of a novel stainless steel against Staphylococcus aureus. Nan L; Yang K; Ren G Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():356-61. PubMed ID: 25842145 [TBL] [Abstract][Full Text] [Related]
17. Surfactin effectively inhibits Staphylococcus aureus adhesion and biofilm formation on surfaces. Liu J; Li W; Zhu X; Zhao H; Lu Y; Zhang C; Lu Z Appl Microbiol Biotechnol; 2019 Jun; 103(11):4565-4574. PubMed ID: 31011774 [TBL] [Abstract][Full Text] [Related]
18. Vancomycin promotes the bacterial autolysis, release of extracellular DNA, and biofilm formation in vancomycin-non-susceptible Staphylococcus aureus. Hsu CY; Lin MH; Chen CC; Chien SC; Cheng YH; Su IN; Shu JC FEMS Immunol Med Microbiol; 2011 Nov; 63(2):236-47. PubMed ID: 22077227 [TBL] [Abstract][Full Text] [Related]
19. A multivariate approach to correlate bacterial surface properties to biofilm formation by lipopolysaccharide mutants of Pseudomonas aeruginosa. Ruhal R; Antti H; Rzhepishevska O; Boulanger N; Barbero DR; Wai SN; Uhlin BE; Ramstedt M Colloids Surf B Biointerfaces; 2015 Mar; 127():182-91. PubMed ID: 25679490 [TBL] [Abstract][Full Text] [Related]
20. Distribution and Inhibition of Liposomes on Staphylococcus aureus and Pseudomonas aeruginosa Biofilm. Dong D; Thomas N; Thierry B; Vreugde S; Prestidge CA; Wormald PJ PLoS One; 2015; 10(6):e0131806. PubMed ID: 26125555 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]