BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 27568596)

  • 1. Activity-based protein profiling for mapping and pharmacologically interrogating proteome-wide ligandable hotspots.
    Roberts AM; Ward CC; Nomura DK
    Curr Opin Biotechnol; 2017 Feb; 43():25-33. PubMed ID: 27568596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NHS-Esters As Versatile Reactivity-Based Probes for Mapping Proteome-Wide Ligandable Hotspots.
    Ward CC; Kleinman JI; Nomura DK
    ACS Chem Biol; 2017 Jun; 12(6):1478-1483. PubMed ID: 28445029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reimagining Druggability Using Chemoproteomic Platforms.
    Spradlin JN; Zhang E; Nomura DK
    Acc Chem Res; 2021 Apr; 54(7):1801-1813. PubMed ID: 33733731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activity-based protein profiling: applications to biomarker discovery, in vivo imaging and drug discovery.
    Berger AB; Vitorino PM; Bogyo M
    Am J Pharmacogenomics; 2004; 4(6):371-81. PubMed ID: 15651898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Global Map of Lipid-Binding Proteins and Their Ligandability in Cells.
    Niphakis MJ; Lum KM; Cognetta AB; Correia BE; Ichu TA; Olucha J; Brown SJ; Kundu S; Piscitelli F; Rosen H; Cravatt BF
    Cell; 2015 Jun; 161(7):1668-80. PubMed ID: 26091042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autoimmune profiling with protein microarrays in clinical applications.
    Abel L; Kutschki S; Turewicz M; Eisenacher M; Stoutjesdijk J; Meyer HE; Woitalla D; May C
    Biochim Biophys Acta; 2014 May; 1844(5):977-87. PubMed ID: 24607371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Screening for disease-markers and investigating drug effects by proteome profiling: can it meet expectations?
    Gerner C
    Comb Chem High Throughput Screen; 2004 Feb; 7(1):1-9. PubMed ID: 14965256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Profiling the specific reactivity of the proteome with non-directed activity-based probes.
    Adam GC; Cravatt BF; Sorensen EJ
    Chem Biol; 2001 Jan; 8(1):81-95. PubMed ID: 11182321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selectivity aspects of activity-based (chemical) probes.
    Heinzlmeir S; Müller S
    Drug Discov Today; 2022 Feb; 27(2):519-528. PubMed ID: 34728376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteome-Wide Fragment-Based Ligand and Target Discovery.
    Forrest I; Parker CG
    Isr J Chem; 2023 Mar; 63(3-4):. PubMed ID: 38213795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeted mass spectrometry approaches for protein biomarker verification.
    Meng Z; Veenstra TD
    J Proteomics; 2011 Nov; 74(12):2650-9. PubMed ID: 21540133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lysine-Targeted Inhibitors and Chemoproteomic Probes.
    Cuesta A; Taunton J
    Annu Rev Biochem; 2019 Jun; 88():365-381. PubMed ID: 30633551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Technological advances for interrogating the human kinome.
    Baharani A; Trost B; Kusalik A; Napper S
    Biochem Soc Trans; 2017 Feb; 45(1):65-77. PubMed ID: 28202660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical biology approaches to probe the proteome.
    Ovaa H; van Leeuwen F
    Chembiochem; 2008 Dec; 9(18):2913-9. PubMed ID: 18972466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping the Evolution of Activity-Based Protein Profiling: A Bibliometric Review.
    Porta EOJ
    Adv Pharm Bull; 2023 Nov; 13(4):639-645. PubMed ID: 38022804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping Proteome-Wide Targets of Environmental Chemicals Using Reactivity-Based Chemoproteomic Platforms.
    Medina-Cleghorn D; Bateman LA; Ford B; Heslin A; Fisher KJ; Dalvie ED; Nomura DK
    Chem Biol; 2015 Oct; 22(10):1394-405. PubMed ID: 26496688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping proteome-wide interactions of reactive chemicals using chemoproteomic platforms.
    Counihan JL; Ford B; Nomura DK
    Curr Opin Chem Biol; 2016 Feb; 30():68-76. PubMed ID: 26647369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibitor focusing: direct selection of drug targets from proteomes using activity-based probes.
    Nomanbhoy TK; Rosenblum J; Aban A; Burbaum JJ
    Assay Drug Dev Technol; 2003 Feb; 1(1 Pt 2):137-46. PubMed ID: 15090140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Approaches for systematic proteome exploration.
    Falk R; Ramström M; Ståhl S; Hober S
    Biomol Eng; 2007 Jun; 24(2):155-68. PubMed ID: 17376740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.