BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 27569530)

  • 1. Ab Initio Simulation of the Absorption Spectra of Photoexcited Carriers in TiO2 Nanoparticles.
    Nunzi F; De Angelis F; Selloni A
    J Phys Chem Lett; 2016 Sep; 7(18):3597-602. PubMed ID: 27569530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical Absorption Spectra and Excitons of Dye-Substrate Interfaces: Catechol on TiO2(110).
    Mowbray DJ; Migani A
    J Chem Theory Comput; 2016 Jun; 12(6):2843-52. PubMed ID: 27183273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-induced charge separation in anatase TiO2 particles.
    Berger T; Sterrer M; Diwald O; Knözinger E; Panayotov D; Thompson TL; Yates JT
    J Phys Chem B; 2005 Apr; 109(13):6061-8. PubMed ID: 16851666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extensive reduction in back electron transfer in twisted intramolecular charge-transfer (TICT) coumarin-dye-sensitized TiO(2) nanoparticles/film: a femtosecond transient absorption study.
    Debnath T; Maity P; Lobo H; Singh B; Shankarling GS; Ghosh HN
    Chemistry; 2014 Mar; 20(12):3510-9. PubMed ID: 24615725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and electronic properties of photoexcited TiO2 nanoparticles from first principles.
    Nunzi F; Agrawal S; Selloni A; De Angelis F
    J Chem Theory Comput; 2015 Feb; 11(2):635-45. PubMed ID: 26579599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial electron transfer between the photoexcited porphyrin molecule and TiO2 nanoparticles: effect of catecholate binding.
    Ramakrishna G; Verma S; Jose DA; Kumar DK; Das A; Palit DK; Ghosh HN
    J Phys Chem B; 2006 May; 110(18):9012-21. PubMed ID: 16671709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of rutile TiO
    Katsiev K; Idriss H
    J Phys Condens Matter; 2024 May; 36(32):. PubMed ID: 38701829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic structures of anatase (TiO2)1-x(TaON)x solid solutions: a first-principles study.
    Dang W; Chen H; Umezawa N; Zhang J
    Phys Chem Chem Phys; 2015 Jul; 17(27):17980-8. PubMed ID: 26096698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2.
    Zhang J; Zhou P; Liu J; Yu J
    Phys Chem Chem Phys; 2014 Oct; 16(38):20382-6. PubMed ID: 25144471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective increasing of optical absorption and energy conversion efficiency of anatase TiO2 nanocrystals by hydrogenation.
    Lu J; Dai Y; Jin H; Huang B
    Phys Chem Chem Phys; 2011 Oct; 13(40):18063-8. PubMed ID: 21915412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low temperature kinetics and energetics of the electron and hole traps in irradiated TiO2 nanoparticles as revealed by EPR spectroscopy.
    Ke SC; Wang TC; Wong MS; Gopal NO
    J Phys Chem B; 2006 Jun; 110(24):11628-34. PubMed ID: 16800456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption and reactions of O2 on anatase TiO2.
    Li YF; Aschauer U; Chen J; Selloni A
    Acc Chem Res; 2014 Nov; 47(11):3361-8. PubMed ID: 24742024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Band structure engineering of anatase TiO2 by metal-assisted P-O coupling.
    Wang J; Meng Q; Huang J; Li Q; Yang J
    J Chem Phys; 2014 May; 140(17):174705. PubMed ID: 24811653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping of the photoinduced electron traps in TiO₂ by picosecond X-ray absorption spectroscopy.
    Rittmann-Frank MH; Milne CJ; Rittmann J; Reinhard M; Penfold TJ; Chergui M
    Angew Chem Int Ed Engl; 2014 Jun; 53(23):5858-62. PubMed ID: 24820181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mediating both valence and conduction bands of TiO
    Chen T; Liu G; Jin F; Wei M; Feng J; Ma Y
    Phys Chem Chem Phys; 2018 May; 20(18):12785-12790. PubMed ID: 29697726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Femtosecond time-resolved X-ray absorption spectroscopy of anatase TiO
    Obara Y; Ito H; Ito T; Kurahashi N; Thürmer S; Tanaka H; Katayama T; Togashi T; Owada S; Yamamoto YI; Karashima S; Nishitani J; Yabashi M; Suzuki T; Misawa K
    Struct Dyn; 2017 Jul; 4(4):044033. PubMed ID: 28713842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New insights into the origin of visible light photocatalytic activity of nitrogen-doped and oxygen-deficient anatase TiO2.
    Lin Z; Orlov A; Lambert RM; Payne MC
    J Phys Chem B; 2005 Nov; 109(44):20948-52. PubMed ID: 16853715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strongly bound excitons in anatase TiO
    Baldini E; Chiodo L; Dominguez A; Palummo M; Moser S; Yazdi-Rizi M; Auböck G; Mallett BPP; Berger H; Magrez A; Bernhard C; Grioni M; Rubio A; Chergui M
    Nat Commun; 2017 Apr; 8(1):13. PubMed ID: 28408739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum confinement effects on electronic photomobilities at nanostructured semiconductor surfaces: Si(111) without and with adsorbed Ag clusters.
    Hembree RH; Vazhappilly T; Micha DA
    J Chem Phys; 2017 Dec; 147(22):224703. PubMed ID: 29246045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hybrid density functional study on the electron and hole trap states in anatase titanium dioxide.
    Yamamoto T; Ohno T
    Phys Chem Chem Phys; 2012 Jan; 14(2):589-98. PubMed ID: 22127526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.