These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 27569757)

  • 1. Contribution of fluid in bone extravascular matrix to strain-rate dependent stiffening of bone tissue - A poroelastic study.
    Le Pense S; Chen Y
    J Mech Behav Biomed Mater; 2017 Jan; 65():90-101. PubMed ID: 27569757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interstitial fluid flow in the osteon with spatial gradients of mechanical properties: a finite element study.
    Rémond A; Naïli S; Lemaire T
    Biomech Model Mechanobiol; 2008 Dec; 7(6):487-95. PubMed ID: 17990014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micro-finite-element method to assess elastic properties of trabecular bone at micro- and macroscopic level.
    Rieger R; Auregan JC; Hoc T
    Morphologie; 2018 Mar; 102(336):12-20. PubMed ID: 28893491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of the poroelastic parameters of cortical bone.
    Smit TH; Huyghe JM; Cowin SC
    J Biomech; 2002 Jun; 35(6):829-35. PubMed ID: 12021003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Informing phenomenological structural bone remodelling with a mechanistic poroelastic model.
    Villette CC; Phillips AT
    Biomech Model Mechanobiol; 2016 Feb; 15(1):69-82. PubMed ID: 26534771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poroelastic behaviour of cortical bone under harmonic axial loading: a finite element study at the osteonal scale.
    Nguyen VH; Lemaire T; Naili S
    Med Eng Phys; 2010 May; 32(4):384-90. PubMed ID: 20226715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical modeling of bone as a multiscale poroelastic material by the homogenization technique.
    Perrin E; Bou-Saïd B; Massi F
    J Mech Behav Biomed Mater; 2019 Mar; 91():373-382. PubMed ID: 30660050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of extrafibrillar matrix to the mechanical behavior of bone using a novel cohesive finite element model.
    Lin L; Samuel J; Zeng X; Wang X
    J Mech Behav Biomed Mater; 2017 Jan; 65():224-235. PubMed ID: 27592291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The poro-viscoelastic properties of trabecular bone: a micro computed tomography-based finite element study.
    Sandino C; McErlain DD; Schipilow J; Boyd SK
    J Mech Behav Biomed Mater; 2015 Apr; 44():1-9. PubMed ID: 25591049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micromechanically based poroelastic modeling of fluid flow in Haversian bone.
    Swan CC; Lakes RS; Brand RA; Stewart KJ
    J Biomech Eng; 2003 Feb; 125(1):25-37. PubMed ID: 12661194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deformation-induced hierarchical flows and drag forces in bone canaliculi and matrix microporosity.
    Mak AF; Huang DT; Zhang JD; Tong P
    J Biomech; 1997 Jan; 30(1):11-8. PubMed ID: 8970919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Modern poro-elastic biomechanical model of bone tissue. I. Biomechanical function of fluids in bone].
    Rogala P; Uklejewski R; Stryła W
    Chir Narzadow Ruchu Ortop Pol; 2002; 67(3):309-16. PubMed ID: 12238403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poroelastic analysis of interstitial fluid flow in a single lamellar trabecula subjected to cyclic loading.
    Kameo Y; Ootao Y; Ishihara M
    Biomech Model Mechanobiol; 2016 Apr; 15(2):361-70. PubMed ID: 26081726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mathematically modeling fluid flow and fluid shear stress in the canaliculi of a loaded osteon.
    Wu X; Wang N; Wang Z; Yu W; Wang Y; Guo Y; Chen W
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):149. PubMed ID: 28155688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of interstitial bone microcracks on strain-induced fluid flow.
    Nguyen VH; Lemaire T; Naili S
    Biomech Model Mechanobiol; 2011 Dec; 10(6):963-72. PubMed ID: 21253808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A three-scale finite element investigation into the effects of tissue mineralisation and lamellar organisation in human cortical and trabecular bone.
    Vaughan TJ; McCarthy CT; McNamara LM
    J Mech Behav Biomed Mater; 2012 Aug; 12():50-62. PubMed ID: 22659366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of boundary conditions, impact loading and hydraulic stiffening on femoral fracture strength.
    Haider IT; Speirs AD; Frei H
    J Biomech; 2013 Sep; 46(13):2115-21. PubMed ID: 23906770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical stimuli of trabecular bone in osteoporosis: A numerical simulation by finite element analysis of microarchitecture.
    Sandino C; McErlain DD; Schipilow J; Boyd SK
    J Mech Behav Biomed Mater; 2017 Feb; 66():19-27. PubMed ID: 27829192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on the biomechanical responses of the loaded bone in macroscale and mesoscale by multiscale poroelastic FE analysis.
    Yu W; Wu X; Cen H; Guo Y; Li C; Wang Y; Qin Y; Chen W
    Biomed Eng Online; 2019 Dec; 18(1):122. PubMed ID: 31870380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A finite difference model of load-induced fluid displacements within bone under mechanical loading.
    Steck R; Niederer P; Knothe Tate ML
    Med Eng Phys; 2000 Mar; 22(2):117-25. PubMed ID: 10854965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.