These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 27569757)

  • 21. The effect of porous microstructure on the anisotropy of bone-like tissue: a counterexample.
    Currey JD; Zioupos P
    J Biomech; 2001 May; 34(5):707-10. PubMed ID: 11383527
    [No Abstract]   [Full Text] [Related]  

  • 22. Linear poroelastic cancellous bone anisotropy: trabecular solid elastic and fluid transport properties.
    Kohles SS; Roberts JB
    J Biomech Eng; 2002 Oct; 124(5):521-6. PubMed ID: 12405594
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Mechanical response numerical analysis of bone tissue based on liquid saturated biphasic porous medium model].
    Li D; Chen H; Wang Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Jun; 21(3):381-6. PubMed ID: 15250138
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anisotropic Permeability of Trabecular Bone and its Relationship to Fabric and Architecture: A Computational Study.
    Kreipke TC; Niebur GL
    Ann Biomed Eng; 2017 Jun; 45(6):1543-1554. PubMed ID: 28155122
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Finite Element-Based Mechanical Assessment of Bone Quality on the Basis of In Vivo Images.
    Pahr DH; Zysset PK
    Curr Osteoporos Rep; 2016 Dec; 14(6):374-385. PubMed ID: 27714581
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stress distribution and consolidation in cartilage constituents is influenced by cyclic loading and osteoarthritic degeneration.
    Speirs AD; Beaulé PE; Ferguson SJ; Frei H
    J Biomech; 2014 Jul; 47(10):2348-53. PubMed ID: 24856886
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Constitutive relations for pressure-driven stiffening in poroelastic tissues.
    Reeve AM; Nash MP; Taberner AJ; Nielsen PM
    J Biomech Eng; 2014 Aug; 136(8):. PubMed ID: 24828684
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The importance of intrinsic damage properties to bone fragility: a finite element study.
    Hardisty MR; Zauel R; Stover SM; Fyhrie DP
    J Biomech Eng; 2013 Jan; 135(1):011004. PubMed ID: 23363215
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tensile behavior of cortical bone: dependence of organic matrix material properties on bone mineral content.
    Kotha SP; Guzelsu N
    J Biomech; 2007; 40(1):36-45. PubMed ID: 16434048
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A multiscale theoretical investigation of electric measurements in living bone : piezoelectricity and electrokinetics.
    Lemaire T; Capiez-Lernout E; Kaiser J; Naili S; Rohan E; Sansalone V
    Bull Math Biol; 2011 Nov; 73(11):2649-77. PubMed ID: 21347811
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Relative contributions of strain-dependent permeability and fixed charged density of proteoglycans in predicting cervical disc biomechanics: a poroelastic C5-C6 finite element model study.
    Hussain M; Natarajan RN; Chaudhary G; An HS; Andersson GB
    Med Eng Phys; 2011 May; 33(4):438-45. PubMed ID: 21167763
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biomechanics and mechanobiology of trabecular bone: a review.
    Oftadeh R; Perez-Viloria M; Villa-Camacho JC; Vaziri A; Nazarian A
    J Biomech Eng; 2015 Jan; 137(1):0108021-01080215. PubMed ID: 25412137
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bone poroelasticity.
    Cowin SC
    J Biomech; 1999 Mar; 32(3):217-38. PubMed ID: 10093022
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cavities in the compact bone in tetrapods and fish and their effect on mechanical properties.
    Currey JD; Shahar R
    J Struct Biol; 2013 Aug; 183(2):107-22. PubMed ID: 23664869
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of bone microstructure on the mechanical properties of skull cortical bone - A combined experimental and computational approach.
    Boruah S; Subit DL; Paskoff GR; Shender BS; Crandall JR; Salzar RS
    J Mech Behav Biomed Mater; 2017 Jan; 65():688-704. PubMed ID: 27743944
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A finite element study of mechanical stimuli in scaffolds for bone tissue engineering.
    Sandino C; Planell JA; Lacroix D
    J Biomech; 2008; 41(5):1005-14. PubMed ID: 18255075
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Towards an acoustic model-based poroelastic imaging method: II. experimental investigation.
    Berry GP; Bamber JC; Miller NR; Barbone PE; Bush NL; Armstrong CG
    Ultrasound Med Biol; 2006 Dec; 32(12):1869-85. PubMed ID: 17169699
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Micro-FE analyses of bone: state of the art.
    van Rietbergen B
    Adv Exp Med Biol; 2001; 496():21-30. PubMed ID: 11783621
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Poroelastic finite element analysis of a bone specimen under cyclic loading.
    Manfredini P; Cocchetti G; Maier G; Redaelli A; Montevecchi FM
    J Biomech; 1999 Feb; 32(2):135-44. PubMed ID: 10052918
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Numerical simulation of streaming potentials due to deformation-induced hierarchical flows in cortical bone.
    Mak AF; Zhang JD
    J Biomech Eng; 2001 Feb; 123(1):66-70. PubMed ID: 11277304
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.