BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 27570114)

  • 1. The role of cholesterol and sphingolipids in the dopamine D
    Mystek P; Dutka P; Tworzydło M; Dziedzicka-Wasylewska M; Polit A
    Biochim Biophys Acta; 2016 Nov; 1861(11):1775-1786. PubMed ID: 27570114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New insights into the model of dopamine D1 receptor and G-proteins interactions.
    Mystek P; Tworzydło M; Dziedzicka-Wasylewska M; Polit A
    Biochim Biophys Acta; 2015 Mar; 1853(3):594-603. PubMed ID: 25527226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Gαi protein subclass selectivity to the dopamine D
    Polit A; Rysiewicz B; Mystek P; Błasiak E; Dziedzicka-Wasylewska M
    Cell Commun Signal; 2020 Dec; 18(1):189. PubMed ID: 33308256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gγ and Gα Identity Dictate a G-Protein Heterotrimer Plasma Membrane Targeting.
    Mystek P; Rysiewicz B; Gregrowicz J; Dziedzicka-Wasylewska M; Polit A
    Cells; 2019 Oct; 8(10):. PubMed ID: 31614907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beyond the G protein α subunit: investigating the functional impact of other components of the Gαi
    Rysiewicz B; Błasiak E; Mystek P; Dziedzicka-Wasylewska M; Polit A
    Cell Commun Signal; 2023 Oct; 21(1):279. PubMed ID: 37817242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TRH-receptor mobility and function in intact and cholesterol-depleted plasma membrane of HEK293 cells stably expressing TRH-R-eGFP.
    Brejchová J; Sýkora J; Ostašov P; Merta L; Roubalová L; Janáček J; Hof M; Svoboda P
    Biochim Biophys Acta; 2015 Mar; 1848(3):781-96. PubMed ID: 25485475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential effects of modification of membrane cholesterol and sphingolipids on the conformation, function, and trafficking of the G protein-coupled cholecystokinin receptor.
    Harikumar KG; Puri V; Singh RD; Hanada K; Pagano RE; Miller LJ
    J Biol Chem; 2005 Jan; 280(3):2176-85. PubMed ID: 15537636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Physical arrangement of membrane lipids susceptible to being used in the process of cell sorting of proteins].
    Wolf C; Quinn P; Koumanov K; Chachaty C; Tenchov B
    J Soc Biol; 1999; 193(2):117-23. PubMed ID: 10451343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. C24 Sphingolipids Govern the Transbilayer Asymmetry of Cholesterol and Lateral Organization of Model and Live-Cell Plasma Membranes.
    Courtney KC; Pezeshkian W; Raghupathy R; Zhang C; Darbyson A; Ipsen JH; Ford DA; Khandelia H; Presley JF; Zha X
    Cell Rep; 2018 Jul; 24(4):1037-1049. PubMed ID: 30044971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid-dependent targeting of G proteins into rafts.
    Moffett S; Brown DA; Linder ME
    J Biol Chem; 2000 Jan; 275(3):2191-8. PubMed ID: 10636925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cholesterol depletion induces dynamic confinement of the G-protein coupled serotonin(1A) receptor in the plasma membrane of living cells.
    Pucadyil TJ; Chattopadhyay A
    Biochim Biophys Acta; 2007 Mar; 1768(3):655-68. PubMed ID: 17292852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localization of the kappa opioid receptor in lipid rafts.
    Xu W; Yoon SI; Huang P; Wang Y; Chen C; Chong PL; Liu-Chen LY
    J Pharmacol Exp Ther; 2006 Jun; 317(3):1295-306. PubMed ID: 16505160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plant G protein heterotrimers require dual lipidation motifs of Galpha and Ggamma and do not dissociate upon activation.
    Adjobo-Hermans MJ; Goedhart J; Gadella TW
    J Cell Sci; 2006 Dec; 119(Pt 24):5087-97. PubMed ID: 17158913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of cholesterol in the formation and nature of lipid rafts in planar and spherical model membranes.
    Crane JM; Tamm LK
    Biophys J; 2004 May; 86(5):2965-79. PubMed ID: 15111412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cholesterol, sphingolipids, and glycolipids: what do we know about their role in raft-like membranes?
    Róg T; Vattulainen I
    Chem Phys Lipids; 2014 Dec; 184():82-104. PubMed ID: 25444976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. D1 dopamine receptor signaling involves caveolin-2 in HEK-293 cells.
    Yu P; Yang Z; Jones JE; Wang Z; Owens SA; Mueller SC; Felder RA; Jose PA
    Kidney Int; 2004 Dec; 66(6):2167-80. PubMed ID: 15569306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane lipid domains and rafts: current applications of fluorescence lifetime spectroscopy and imaging.
    de Almeida RF; Loura LM; Prieto M
    Chem Phys Lipids; 2009 Feb; 157(2):61-77. PubMed ID: 18723009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hemagglutinin clusters in the plasma membrane are not enriched with cholesterol and sphingolipids.
    Wilson RL; Frisz JF; Klitzing HA; Zimmerberg J; Weber PK; Kraft ML
    Biophys J; 2015 Apr; 108(7):1652-1659. PubMed ID: 25863057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence studies reveal heterodimerization of dopamine D1 and D2 receptors in the plasma membrane.
    Dziedzicka-Wasylewska M; Faron-Górecka A; Andrecka J; Polit A; Kuśmider M; Wasylewski Z
    Biochemistry; 2006 Jul; 45(29):8751-9. PubMed ID: 16846218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of cholesterol and sphingolipids in chemokine receptor function and HIV-1 envelope glycoprotein-mediated fusion.
    Ablan S; Rawat SS; Viard M; Wang JM; Puri A; Blumenthal R
    Virol J; 2006 Dec; 3():104. PubMed ID: 17187670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.