BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 27570223)

  • 1.
    Wada K; Toya Y; Banno S; Yoshikawa K; Matsuda F; Shimizu H
    J Biosci Bioeng; 2017 Feb; 123(2):177-182. PubMed ID: 27570223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of precise control of flux ratio between the glycolytic pathways on mevalonate production in Escherichia coli.
    Kamata K; Toya Y; Shimizu H
    Biotechnol Bioeng; 2019 May; 116(5):1080-1088. PubMed ID: 30636280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic engineering of mevalonate-producing Escherichia coli strains based on thermodynamic analysis.
    Nagai H; Masuda A; Toya Y; Matsuda F; Shimizu H
    Metab Eng; 2018 May; 47():1-9. PubMed ID: 29499375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic impact of nutrient starvation in mevalonate-producing Escherichia coli.
    Masuda A; Toya Y; Shimizu H
    Bioresour Technol; 2017 Dec; 245(Pt B):1634-1640. PubMed ID: 28501379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of isopropyl alcohol-producing Escherichia coli strains with
    Okahashi N; Matsuda F; Yoshikawa K; Shirai T; Matsumoto Y; Wada M; Shimizu H
    Biotechnol Bioeng; 2017 Dec; 114(12):2782-2793. PubMed ID: 28755490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fine tuning the glycolytic flux ratio of EP-bifido pathway for mevalonate production by enhancing glucose-6-phosphate dehydrogenase (Zwf) and CRISPRi suppressing 6-phosphofructose kinase (PfkA) in Escherichia coli.
    Li Y; Xian H; Xu Y; Zhu Y; Sun Z; Wang Q; Qi Q
    Microb Cell Fact; 2021 Feb; 20(1):32. PubMed ID: 33531004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli.
    Meng J; Wang B; Liu D; Chen T; Wang Z; Zhao X
    Microb Cell Fact; 2016 Aug; 15(1):141. PubMed ID: 27520031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering and manipulation of a mevalonate pathway in Escherichia coli for isoprene production.
    Liu CL; Bi HR; Bai Z; Fan LH; Tan TW
    Appl Microbiol Biotechnol; 2019 Jan; 103(1):239-250. PubMed ID: 30374674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combinatorial expression of bacterial whole mevalonate pathway for the production of beta-carotene in E. coli.
    Yoon SH; Lee SH; Das A; Ryu HK; Jang HJ; Kim JY; Oh DK; Keasling JD; Kim SW
    J Biotechnol; 2009 Mar; 140(3-4):218-26. PubMed ID: 19428716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Central metabolic responses to the overproduction of fatty acids in Escherichia coli based on 13C-metabolic flux analysis.
    He L; Xiao Y; Gebreselassie N; Zhang F; Antoniewiez MR; Tang YJ; Peng L
    Biotechnol Bioeng; 2014 Mar; 111(3):575-85. PubMed ID: 24122357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergy between methylerythritol phosphate pathway and mevalonate pathway for isoprene production in Escherichia coli.
    Yang C; Gao X; Jiang Y; Sun B; Gao F; Yang S
    Metab Eng; 2016 Sep; 37():79-91. PubMed ID: 27174717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reassessing acetyl-CoA supply and NADPH availability for mevalonate biosynthesis from glycerol in Escherichia coli.
    Wang Y; Zhou S; Li R; Liu Q; Shao X; Zhu L; Kang MK; Wei G; Kim SW; Wang C
    Biotechnol Bioeng; 2022 Oct; 119(10):2868-2877. PubMed ID: 35781874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of E. coli for improving mevalonate production to promote NADPH regeneration and enhance acetyl-CoA supply.
    Satowa D; Fujiwara R; Uchio S; Nakano M; Otomo C; Hirata Y; Matsumoto T; Noda S; Tanaka T; Kondo A
    Biotechnol Bioeng; 2020 Jul; 117(7):2153-2164. PubMed ID: 32255505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering an in vivo EP-bifido pathway in Escherichia coli for high-yield acetyl-CoA generation with low CO
    Wang Q; Xu J; Sun Z; Luan Y; Li Y; Wang J; Liang Q; Qi Q
    Metab Eng; 2019 Jan; 51():79-87. PubMed ID: 30102971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of mevalonate by a metabolically-engineered Escherichia coli.
    Tabata K; Hashimoto S
    Biotechnol Lett; 2004 Oct; 26(19):1487-91. PubMed ID: 15604784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ¹³C-based metabolic flux analysis of Saccharomyces cerevisiae with a reduced Crabtree effect.
    Kajihata S; Matsuda F; Yoshimi M; Hayakawa K; Furusawa C; Kanda A; Shimizu H
    J Biosci Bioeng; 2015 Aug; 120(2):140-4. PubMed ID: 25634548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving the production of isoprene and 1,3-propanediol by metabolically engineered Escherichia coli through recycling redox cofactor between the dual pathways.
    Guo J; Cao Y; Liu H; Zhang R; Xian M; Liu H
    Appl Microbiol Biotechnol; 2019 Mar; 103(6):2597-2608. PubMed ID: 30719552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Perillyl alcohol production by engineered heterologous mevalonate pathway in Escherichia coli].
    Qin Z; Zhang R; Yu J
    Sheng Wu Gong Cheng Xue Bao; 2018 May; 34(5):722-730. PubMed ID: 29893080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic flux of the oxidative pentose phosphate pathway under low light conditions in Synechocystis sp. PCC 6803.
    Ueda K; Nakajima T; Yoshikawa K; Toya Y; Matsuda F; Shimizu H
    J Biosci Bioeng; 2018 Jul; 126(1):38-43. PubMed ID: 29499995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosynthesis of β-carotene in engineered E. coli using the MEP and MVA pathways.
    Yang J; Guo L
    Microb Cell Fact; 2014 Nov; 13():160. PubMed ID: 25403509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.