BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 27570304)

  • 1. Identification of DNA Methyltransferase Genes in Human Pathogenic Bacteria by Comparative Genomics.
    Brambila-Tapia AJ; Poot-Hernández AC; Perez-Rueda E; Rodríguez-Vázquez K
    Indian J Microbiol; 2016 Jun; 56(2):134-41. PubMed ID: 27570304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing the DNA Methyltransferases of Haloferax volcanii via Bioinformatics, Gene Deletion, and SMRT Sequencing.
    Ouellette M; Gogarten JP; Lajoie J; Makkay AM; Papke RT
    Genes (Basel); 2018 Feb; 9(3):. PubMed ID: 29495512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diversity of DNA methyltransferases that recognize asymmetric target sequences.
    Madhusoodanan UK; Rao DN
    Crit Rev Biochem Mol Biol; 2010 Apr; 45(2):125-45. PubMed ID: 20184512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA methyltransferases: mechanistic models derived from kinetic analysis.
    Malygin EG; Hattman S
    Crit Rev Biochem Mol Biol; 2012; 47(2):97-193. PubMed ID: 22260147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of the cytosine-5 DNA methyltransferase gene family in
    Li J; Li C; Lu S
    PeerJ; 2018; 6():e4461. PubMed ID: 29527415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic survey, gene expression analysis and structural modeling suggest diverse roles of DNA methyltransferases in legumes.
    Garg R; Kumari R; Tiwari S; Goyal S
    PLoS One; 2014; 9(2):e88947. PubMed ID: 24586452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of the DpnM DNA adenine methyltransferase from the DpnII restriction system of streptococcus pneumoniae bound to S-adenosylmethionine.
    Tran PH; Korszun ZR; Cerritelli S; Springhorn SS; Lacks SA
    Structure; 1998 Dec; 6(12):1563-75. PubMed ID: 9862809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Helicobacter pylori Methylome: Roles in Gene Regulation and Virulence.
    Gorrell R; Kwok T
    Curr Top Microbiol Immunol; 2017; 400():105-127. PubMed ID: 28124151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of DNA methylation in Alphaproteobacteria.
    Mouammine A; Collier J
    Mol Microbiol; 2018 Oct; 110(1):1-10. PubMed ID: 29995343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary relationship of Alw26I, Eco31I and Esp3I, restriction endonucleases that recognise overlapping sequences.
    Bitinaite J; Mitkaite G; Dauksaite V; Jakubauskas A; Timinskas A; Vaisvila R; Lubys A; Janulaitis A
    Mol Genet Genomics; 2002 Jul; 267(5):664-72. PubMed ID: 12172806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA methyltransferases of the cyanobacterium Anabaena PCC 7120.
    Matveyev AV; Young KT; Meng A; Elhai J
    Nucleic Acids Res; 2001 Apr; 29(7):1491-506. PubMed ID: 11266551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mimicking-of-DNA-methylation-patterns pipeline for overcoming the restriction barrier of bacteria.
    Zhang G; Wang W; Deng A; Sun Z; Zhang Y; Liang Y; Che Y; Wen T
    PLoS Genet; 2012 Sep; 8(9):e1002987. PubMed ID: 23028379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. M.phi 3TII: a new monospecific DNA (cytosine-C5) methyltransferase with pronounced amino acid sequence similarity to a family of adenine-N6-DNA-methyltransferases.
    Noyer-Weidner M; Walter J; Terschüren PA; Chai S; Trautner TA
    Nucleic Acids Res; 1994 Oct; 22(20):4066-72. PubMed ID: 7937131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. M.phi 3TII: a new monospecific DNA (cytosine-C5) methyltransferase with pronounced amino acid sequence similarity to a family of adenine-N6-DNA-methyltransferases.
    Noyer-Weidner M; Walter J; Terschüren PA; Chai S; Trautner TA
    Nucleic Acids Res; 1994 Dec; 22(24):5517-23. PubMed ID: 7816649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular evolution of DNA-(cytosine-N4) methyltransferases: evidence for their polyphyletic origin.
    Bujnicki JM; Radlinska M
    Nucleic Acids Res; 1999 Nov; 27(22):4501-9. PubMed ID: 10536161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-guided analysis reveals nine sequence motifs conserved among DNA amino-methyltransferases, and suggests a catalytic mechanism for these enzymes.
    Malone T; Blumenthal RM; Cheng X
    J Mol Biol; 1995 Nov; 253(4):618-32. PubMed ID: 7473738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure, function and mechanism of exocyclic DNA methyltransferases.
    Bheemanaik S; Reddy YV; Rao DN
    Biochem J; 2006 Oct; 399(2):177-90. PubMed ID: 16987108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA Methylation by Restriction Modification Systems Affects the Global Transcriptome Profile in Borrelia burgdorferi.
    Casselli T; Tourand Y; Scheidegger A; Arnold WK; Proulx A; Stevenson B; Brissette CA
    J Bacteriol; 2018 Dec; 200(24):. PubMed ID: 30249703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Restriction and modification systems of Neisseria gonorrhoeae.
    Stein DC; Gunn JS; Radlinska M; Piekarowicz A
    Gene; 1995 May; 157(1-2):19-22. PubMed ID: 7607490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. mRNA:guanine-N7 cap methyltransferases: identification of novel members of the family, evolutionary analysis, homology modeling, and analysis of sequence-structure-function relationships.
    Bujnicki JM; Feder M; Radlinska M; Rychlewski L
    BMC Bioinformatics; 2001; 2():2. PubMed ID: 11472630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.