These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 27570574)

  • 1. A two-compartment microfluidic device for long-term live cell detection based on surface plasmon resonance.
    Deng S; Yu X; Liu R; Chen W; Wang P
    Biomicrofluidics; 2016 Jul; 10(4):044109. PubMed ID: 27570574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A surface plasmon resonance sensor on a compact disk-type microfluidic device.
    Hemmi A; Usui T; Moto A; Tobita T; Soh N; Nakano K; Zeng H; Uchiyama K; Imato T; Nakajima H
    J Sep Sci; 2011 Oct; 34(20):2913-9. PubMed ID: 21928434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay.
    Lee KH; Su YD; Chen SJ; Tseng FG; Lee GB
    Biosens Bioelectron; 2007 Nov; 23(4):466-72. PubMed ID: 17618110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. All-thermoplastic nanoplasmonic microfluidic device for transmission SPR biosensing.
    Malic L; Morton K; Clime L; Veres T
    Lab Chip; 2013 Mar; 13(5):798-810. PubMed ID: 23287840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated active mixing and biosensing using surface acoustic waves (SAW) and surface plasmon resonance (SPR) on a common substrate.
    Renaudin A; Chabot V; Grondin E; Aimez V; Charette PG
    Lab Chip; 2010 Jan; 10(1):111-5. PubMed ID: 20024058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A surface acoustic wave (SAW)-enhanced grating-coupling phase-interrogation surface plasmon resonance (SPR) microfluidic biosensor.
    Sonato A; Agostini M; Ruffato G; Gazzola E; Liuni D; Greco G; Travagliati M; Cecchini M; Romanato F
    Lab Chip; 2016 Apr; 16(7):1224-33. PubMed ID: 26932784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell culture chip using low-shear mass transport.
    Liu K; Pitchimani R; Dang D; Bayer K; Harrington T; Pappas D
    Langmuir; 2008 Jun; 24(11):5955-60. PubMed ID: 18471001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational fluid dynamics-based design of a microfabricated cell capture device.
    Jarvas G; Szigeti M; Hajba L; Furjes P; Guttman A
    J Chromatogr Sci; 2015 Mar; 53(3):411-6. PubMed ID: 25205671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Microfluidic Flow Rate Detection Method Based on Surface Plasmon Resonance Temperature Imaging.
    Deng S; Wang P; Liu S; Zhao T; Xu S; Guo M; Yu X
    Sensors (Basel); 2016 Jun; 16(7):. PubMed ID: 27347960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional interconnected microporous poly(dimethylsiloxane) microfluidic devices.
    Yuen PK; Su H; Goral VN; Fink KA
    Lab Chip; 2011 Apr; 11(8):1541-4. PubMed ID: 21359315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-Dimensional Surface Plasmon Resonance Imaging System for Cellular Analysis.
    Mir TA; Shinohara H
    Methods Mol Biol; 2017; 1571():31-46. PubMed ID: 28281248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic device for immunoassays based on surface plasmon resonance imaging.
    Luo Y; Yu F; Zare RN
    Lab Chip; 2008 May; 8(5):694-700. PubMed ID: 18432338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrofluidic pressure sensor embedded microfluidic device: a study of endothelial cells under hydrostatic pressure and shear stress combinations.
    Liu MC; Shih HC; Wu JG; Weng TW; Wu CY; Lu JC; Tung YC
    Lab Chip; 2013 May; 13(9):1743-53. PubMed ID: 23475014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of Miniature Surface Plasmon Resonance Sensor Chips by Using Confined Sessile Drop Technique.
    Nootchanat S; Jaikeandee W; Yaiwong P; Lertvachirapaiboon C; Shinbo K; Kato K; Ekgasit S; Baba A
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):11954-11960. PubMed ID: 30844226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On-chip gradient generation in 256 microfluidic cell cultures: simulation and experimental validation.
    Somaweera H; Haputhanthri SO; Ibraguimov A; Pappas D
    Analyst; 2015 Aug; 140(15):5029-38. PubMed ID: 26050759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiplex detection of urinary miRNA biomarkers by transmission surface plasmon resonance.
    Yeung WK; Chen HY; Sun JJ; Hsieh TH; Mousavi MZ; Chen HH; Lee KL; Lin H; Wei PK; Cheng JY
    Analyst; 2018 Sep; 143(19):4715-4722. PubMed ID: 30188550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On-chip enzyme immunoassay of a cardiac marker using a microfluidic device combined with a portable surface plasmon resonance system.
    Kurita R; Yokota Y; Sato Y; Mizutani F; Niwa O
    Anal Chem; 2006 Aug; 78(15):5525-31. PubMed ID: 16878891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of pathogenic E. coli O157:H7 by a hybrid microfluidic SPR and molecular imaging cytometry device.
    Zordan MD; Grafton MM; Acharya G; Reece LM; Cooper CL; Aronson AI; Park K; Leary JF
    Cytometry A; 2009 Feb; 75(2):155-62. PubMed ID: 19061247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid Fabrication of Membrane-Integrated Thermoplastic Elastomer Microfluidic Devices.
    McMillan AH; Thomée EK; Dellaquila A; Nassman H; Segura T; Lesher-Pérez SC
    Micromachines (Basel); 2020 Jul; 11(8):. PubMed ID: 32731570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated microdevice for long-term automated perfusion culture without shear stress and real-time electrochemical monitoring of cells.
    Li LM; Wang W; Zhang SH; Chen SJ; Guo SS; Français O; Cheng JK; Huang WH
    Anal Chem; 2011 Dec; 83(24):9524-30. PubMed ID: 22087849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.