BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 27570580)

  • 1. Sphingolipids in spinal cord injury.
    Jones ZB; Ren Y
    Int J Physiol Pathophysiol Pharmacol; 2016; 8(2):52-69. PubMed ID: 27570580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel agents targeting bioactive sphingolipids for the treatment of cancer.
    Adan-Gokbulut A; Kartal-Yandim M; Iskender G; Baran Y
    Curr Med Chem; 2013; 20(1):108-22. PubMed ID: 23244584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Traumatic Spinal Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mechanisms.
    Alizadeh A; Dyck SM; Karimi-Abdolrezaee S
    Front Neurol; 2019; 10():282. PubMed ID: 30967837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of Sphingolipid Mediators on the Determination of Cochlear Survival in Ototoxicity.
    Tabuchi K; Hara A
    Curr Mol Pharmacol; 2018; 11(4):279-284. PubMed ID: 29766830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sphingolipids in lung growth and repair.
    Tibboel J; Reiss I; de Jongste JC; Post M
    Chest; 2014 Jan; 145(1):120-128. PubMed ID: 24394822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomarkers in Spinal Cord Injury: from Prognosis to Treatment.
    Rodrigues LF; Moura-Neto V; E Spohr TCLS
    Mol Neurobiol; 2018 Aug; 55(8):6436-6448. PubMed ID: 29307082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Emerging Role of lncRNAs in Spinal Cord Injury.
    Wang F; Liu J; Wang X; Chen J; Kong Q; Ye B; Li Z
    Biomed Res Int; 2019; 2019():3467121. PubMed ID: 31737660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Principles of bioactive lipid signalling: lessons from sphingolipids.
    Hannun YA; Obeid LM
    Nat Rev Mol Cell Biol; 2008 Feb; 9(2):139-50. PubMed ID: 18216770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cancer and sphingolipid storage disease therapy using novel synthetic analogs of sphingolipids.
    Gatt S; Dagan A
    Chem Phys Lipids; 2012 May; 165(4):462-74. PubMed ID: 22387097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of sphingolipids in respiratory disease.
    Yang Y; Uhlig S
    Ther Adv Respir Dis; 2011 Oct; 5(5):325-44. PubMed ID: 21900155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Role of Therapeutic Hypothermia After Traumatic Spinal Cord Injury--A Systematic Review.
    Alkabie S; Boileau AJ
    World Neurosurg; 2016 Feb; 86():432-49. PubMed ID: 26433095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multifaceted roles of sphingosine-1-phosphate: how does this bioactive sphingolipid fit with acute neurological injury?
    Singh IN; Hall ED
    J Neurosci Res; 2008 May; 86(7):1419-33. PubMed ID: 18058948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sphingolipids in mitochondria.
    Hernández-Corbacho MJ; Salama MF; Canals D; Senkal CE; Obeid LM
    Biochim Biophys Acta Mol Cell Biol Lipids; 2017 Jan; 1862(1):56-68. PubMed ID: 27697478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maresin 1 Promotes Inflammatory Resolution, Neuroprotection, and Functional Neurological Recovery After Spinal Cord Injury.
    Francos-Quijorna I; Santos-Nogueira E; Gronert K; Sullivan AB; Kopp MA; Brommer B; David S; Schwab JM; López-Vales R
    J Neurosci; 2017 Nov; 37(48):11731-11743. PubMed ID: 29109234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel Sphingolipid-Based Cancer Therapeutics in the Personalized Medicine Era.
    Shaw J; Costa-Pinheiro P; Patterson L; Drews K; Spiegel S; Kester M
    Adv Cancer Res; 2018; 140():327-366. PubMed ID: 30060815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sphingosine-1-phosphate phosphohydrolase in regulation of sphingolipid metabolism and apoptosis.
    Le Stunff H; Galve-Roperh I; Peterson C; Milstien S; Spiegel S
    J Cell Biol; 2002 Sep; 158(6):1039-49. PubMed ID: 12235122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sphingolipid metabolism and interorganellar transport: localization of sphingolipid enzymes and lipid transfer proteins.
    Yamaji T; Hanada K
    Traffic; 2015 Feb; 16(2):101-22. PubMed ID: 25382749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute spinal cord injury: A review of pathophysiology and potential of non-steroidal anti-inflammatory drugs for pharmacological intervention.
    Hayta E; Elden H
    J Chem Neuroanat; 2018 Jan; 87():25-31. PubMed ID: 28803968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macrophage polarization: a key event in the secondary phase of acute spinal cord injury.
    Kong X; Gao J
    J Cell Mol Med; 2017 May; 21(5):941-954. PubMed ID: 27957787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From basics to clinical: a comprehensive review on spinal cord injury.
    Silva NA; Sousa N; Reis RL; Salgado AJ
    Prog Neurobiol; 2014 Mar; 114():25-57. PubMed ID: 24269804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.