These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 27570712)

  • 1. The importance of fracture toughness in ultrafine and nanocrystalline bulk materials.
    Pippan R; Hohenwarter A
    Mater Res Lett; 2016 Jul; 4(3):127-136. PubMed ID: 27570712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fracture and fracture toughness of nanopolycrystalline metals produced by severe plastic deformation.
    Hohenwarter A; Pippan R
    Philos Trans A Math Phys Eng Sci; 2015 Mar; 373(2038):. PubMed ID: 25713459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comprehensive study on the damage tolerance of ultrafine-grained copper.
    Hohenwarter A; Pippan R
    Mater Sci Eng A Struct Mater; 2012 Apr; 540(2):89-96. PubMed ID: 23471016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of the Texture of the Ultrafine-Grained Ti-6Al-4V Titanium Alloy on Impact Toughness.
    Modina IM; Dyakonov GS; Stotskiy AG; Yakovleva TV; Semenova IP
    Materials (Basel); 2023 Feb; 16(3):. PubMed ID: 36770323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-strong and damage tolerant metallic bulk materials: A lesson from nanostructured pearlitic steel wires.
    Hohenwarter A; Völker B; Kapp MW; Li Y; Goto S; Raabe D; Pippan R
    Sci Rep; 2016 Sep; 6():33228. PubMed ID: 27624220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strength and Fracture Mechanism of an Ultrafine-Grained Austenitic Steel for Medical Applications.
    Klevtsov GV; Valiev RZ; Klevtsova NA; Tyurkov MN; Linderov ML; Abramova MM; Raab AG; Minasov TB
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fracture of ECAP-deformed iron and the role of extrinsic toughening mechanisms.
    Hohenwarter A; Pippan R
    Acta Mater; 2013 May; 61(8):2973-2983. PubMed ID: 23645995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanomechanical characterization of alumina coatings grown on FeCrAl alloy by thermal oxidation.
    Frutos E; González-Carrasco JL; Polcar T
    J Mech Behav Biomed Mater; 2016 Apr; 57():310-20. PubMed ID: 26875145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elastic plastic fracture mechanics investigation of toughness of wet colloidal particulate materials: Influence of saturation.
    Franks GV; Sesso ML; Lam M; Lu Y; Xu L
    J Colloid Interface Sci; 2021 Jan; 581(Pt B):627-634. PubMed ID: 32810728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An analysis of crack growth in dentin at the microstructural scale.
    An B; Zhang D
    J Mech Behav Biomed Mater; 2018 May; 81():149-160. PubMed ID: 29522965
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    El Atwani O; Unal K; Cunningham WS; Fensin S; Hinks J; Greaves G; Maloy S
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32050520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of severe grain refinement on the damage tolerance of a superelastic NiTi shape memory alloy.
    Leitner T; Sabirov I; Pippan R; Hohenwarter A
    J Mech Behav Biomed Mater; 2017 Jul; 71():337-348. PubMed ID: 28399494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystalline defects in bulk metallic glasses: consequences on fracture toughness determination and ductility.
    Bernard C; Keryvin V
    J Phys Condens Matter; 2020 Sep; 32(48):. PubMed ID: 32726754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gamma irradiation alters fatigue-crack behavior and fracture toughness in 1900H and GUR 1050 UHMWPE.
    Cole JC; Lemons JE; Eberhardt AW
    J Biomed Mater Res; 2002; 63(5):559-66. PubMed ID: 12209901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resistance to crack growth in human cortical bone is greater in shear than in tension.
    Norman TL; Nivargikar SV; Burr DB
    J Biomech; 1996 Aug; 29(8):1023-31. PubMed ID: 8817369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The conflicts between strength and toughness.
    Ritchie RO
    Nat Mater; 2011 Oct; 10(11):817-22. PubMed ID: 22020005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Indentation techniques for evaluating the fracture toughness of biomaterials and hard tissues.
    Kruzic JJ; Kim DK; Koester KJ; Ritchie RO
    J Mech Behav Biomed Mater; 2009 Aug; 2(4):384-95. PubMed ID: 19627845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying Novel Clinical Surrogates to Assess Human Bone Fracture Toughness.
    Granke M; Makowski AJ; Uppuganti S; Does MD; Nyman JS
    J Bone Miner Res; 2015 Jul; 30(7):1290-300. PubMed ID: 25639628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fracture modes and hybrid toughening mechanisms in oscillated/twisted plywood structure.
    Song Z; Ni Y; Cai S
    Acta Biomater; 2019 Jun; 91():284-293. PubMed ID: 31028909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anisotropy of age-related toughness loss in human cortical bone: a finite element study.
    Ural A; Vashishth D
    J Biomech; 2007; 40(7):1606-14. PubMed ID: 17054962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.