These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 27570879)

  • 1. Optogenetic Regulation of Tunable Gene Expression in Yeast Using Photo-Labile Caged Methionine.
    Kusen PM; Wandrey G; Probst C; Grünberger A; Holz M; Meyer Zu Berstenhorst S; Kohlheyer D; Büchs J; Pietruszka J
    ACS Chem Biol; 2016 Oct; 11(10):2915-2922. PubMed ID: 27570879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-controlled gene expression in yeast using photocaged Cu
    Kusen PM; Wandrey G; Krewald V; Holz M; Berstenhorst SMZ; Büchs J; Pietruszka J
    J Biotechnol; 2017 Sep; 258():117-125. PubMed ID: 28455204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optogenetic switches for light-controlled gene expression in yeast.
    Salinas F; Rojas V; Delgado V; Agosin E; Larrondo LF
    Appl Microbiol Biotechnol; 2017 Apr; 101(7):2629-2640. PubMed ID: 28210796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction and Characterization of Light-Responsive Transcriptional Systems.
    Gligorovski V; Rahi SJ
    Methods Mol Biol; 2024; 2844():261-275. PubMed ID: 39068346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The rise and shine of yeast optogenetics.
    Figueroa D; Rojas V; Romero A; Larrondo LF; Salinas F
    Yeast; 2021 Feb; 38(2):131-146. PubMed ID: 33119964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate-mediated remodeling of methionine transport by multiple ubiquitin-dependent mechanisms in yeast cells.
    Menant A; Barbey R; Thomas D
    EMBO J; 2006 Oct; 25(19):4436-47. PubMed ID: 16977312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. N-terminal methionine removal and methionine metabolism in Saccharomyces cerevisiae.
    Dummitt B; Micka WS; Chang YH
    J Cell Biochem; 2003 Aug; 89(5):964-74. PubMed ID: 12874831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human β-defensin-2 production from S. cerevisiae using the repressible MET17 promoter.
    Møller TS; Hay J; Saxton MJ; Bunting K; Petersen EI; Kjærulff S; Finnis CJ
    Microb Cell Fact; 2017 Jan; 16(1):11. PubMed ID: 28100236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photocaged Arabinose: A Novel Optogenetic Switch for Rapid and Gradual Control of Microbial Gene Expression.
    Binder D; Bier C; Grünberger A; Drobietz D; Hage-Hülsmann J; Wandrey G; Büchs J; Kohlheyer D; Loeschcke A; Wiechert W; Jaeger KE; Pietruszka J; Drepper T
    Chembiochem; 2016 Feb; 17(4):296-9. PubMed ID: 26677142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blue light-mediated transcriptional activation and repression of gene expression in bacteria.
    Jayaraman P; Devarajan K; Chua TK; Zhang H; Gunawan E; Poh CL
    Nucleic Acids Res; 2016 Aug; 44(14):6994-7005. PubMed ID: 27353329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cat8 and Sip4 mediate regulated transcriptional activation of the yeast malate dehydrogenase gene MDH2 by three carbon source-responsive promoter elements.
    Roth S; Schüller HJ
    Yeast; 2001 Jan; 18(2):151-62. PubMed ID: 11169757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The centromere-binding factor Cbf1p from Candida albicans complements the methionine auxotrophic phenotype of Saccharomyces cerevisiae.
    Eck R; Stoyan T; Künkel W
    Yeast; 2001 Aug; 18(11):1047-52. PubMed ID: 11481675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and Implementation of an Automated Illuminating, Culturing, and Sampling System for Microbial Optogenetic Applications.
    Stewart CJ; McClean MN
    J Vis Exp; 2017 Feb; (120):. PubMed ID: 28287505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A region of the cellobiohydrolase I promoter from the filamentous fungus Trichoderma reesei mediates glucose repression in Saccharomyces cerevisiae, dependent on mitochondrial activity.
    Carraro DM; Ferreira Júnior JR; Schumacher R; Pereira GG; Hollenberg CP; El-Dorry H
    Biochem Biophys Res Commun; 1998 Dec; 253(2):407-14. PubMed ID: 9878550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning and characterization of the Kluyveromyces lactis homocysteine synthase gene.
    Brzywczy J; Paszewski A
    Yeast; 1999 Sep; 15(13):1403-9. PubMed ID: 10509022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional regulation of the one-carbon metabolism regulon in Saccharomyces cerevisiae by Bas1p.
    Subramanian M; Qiao WB; Khanam N; Wilkins O; Der SD; Lalich JD; Bognar AL
    Mol Microbiol; 2005 Jul; 57(1):53-69. PubMed ID: 15948949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Construction and preliminary applications of a Saccharomyces cerevisiae detection plasmid using for screening promoter elements].
    Wang ZF; Wang ZB; Li LN; Jian-Mei AN; Wang-Wei ; Cheng KD; Kong JQ
    Yao Xue Xue Bao; 2013 Feb; 48(2):228-35. PubMed ID: 23672019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MET3 promoter: a tightly regulated promoter and its application in construction of conditional lethal strain.
    Mao X; Hu Y; Liang C; Lu C
    Curr Microbiol; 2002 Jul; 45(1):37-40. PubMed ID: 12029525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An experimental approach to identify dynamical models of transcriptional regulation in living cells.
    Fiore G; Menolascina F; di Bernardo M; di Bernardo D
    Chaos; 2013 Jun; 23(2):025106. PubMed ID: 23822504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conditional cell-wall mutants of Saccharomyces cerevisiae as delivery vehicles for therapeutic agents in vivo to the GI tract.
    Omara WA; Rash BM; Hayes A; Wickham MS; Oliver SG; Stateva LI
    J Biotechnol; 2010 May; 147(2):136-43. PubMed ID: 20356564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.