These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
335 related articles for article (PubMed ID: 27571031)
1. Core/Double-Shell Type Gradient Ni-Rich LiNi0.76Co0.10Mn0.14O2 with High Capacity and Long Cycle Life for Lithium-Ion Batteries. Liao JY; Oh SM; Manthiram A ACS Appl Mater Interfaces; 2016 Sep; 8(37):24543-9. PubMed ID: 27571031 [TBL] [Abstract][Full Text] [Related]
2. Long-Life Nickel-Rich Layered Oxide Cathodes with a Uniform Li Song B; Li W; Oh SM; Manthiram A ACS Appl Mater Interfaces; 2017 Mar; 9(11):9718-9725. PubMed ID: 28248082 [TBL] [Abstract][Full Text] [Related]
3. Synthesis Method for Long Cycle Life Lithium-Ion Cathode Material: Nickel-Rich Core-Shell LiNi Li Q; Dang R; Chen M; Lee Y; Hu Z; Xiao X ACS Appl Mater Interfaces; 2018 May; 10(21):17850-17860. PubMed ID: 29733197 [TBL] [Abstract][Full Text] [Related]
4. High-Performance Heterostructured Cathodes for Lithium-Ion Batteries with a Ni-Rich Layered Oxide Core and a Li-Rich Layered Oxide Shell. Oh P; Oh SM; Li W; Myeong S; Cho J; Manthiram A Adv Sci (Weinh); 2016 Nov; 3(11):1600184. PubMed ID: 27980994 [TBL] [Abstract][Full Text] [Related]
5. Synthesis and characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the microscale core-shell structure as the positive electrode material for lithium batteries. Sun YK; Myung ST; Kim MH; Prakash J; Amine K J Am Chem Soc; 2005 Sep; 127(38):13411-8. PubMed ID: 16173775 [TBL] [Abstract][Full Text] [Related]
6. Towards deriving Ni-rich cathode and oxide-based anode materials from hydroxides by sharing a facile co-precipitation method. Qiu H; Du T; Wu J; Wang Y; Liu J; Ye S; Liu S Dalton Trans; 2018 May; 47(20):6934-6941. PubMed ID: 29713709 [TBL] [Abstract][Full Text] [Related]
7. Novel Core-Shell-Type Design of Na Shin JW; Son JT J Nanosci Nanotechnol; 2019 Mar; 19(3):1335-1339. PubMed ID: 30469184 [TBL] [Abstract][Full Text] [Related]
8. Understanding the Origin of Enhanced Performances in Core-Shell and Concentration-Gradient Layered Oxide Cathode Materials. Song D; Hou P; Wang X; Shi X; Zhang L ACS Appl Mater Interfaces; 2015 Jun; 7(23):12864-72. PubMed ID: 26017733 [TBL] [Abstract][Full Text] [Related]
10. Ni-Rich LiNi Chen S; He T; Su Y; Lu Y; Bao L; Chen L; Zhang Q; Wang J; Chen R; Wu F ACS Appl Mater Interfaces; 2017 Sep; 9(35):29732-29743. PubMed ID: 28799739 [TBL] [Abstract][Full Text] [Related]
11. Multifunctional Integration of Double-Shell Hybrid Nanostructure for Alleviating Surface Degradation of LiNi Ran Q; Zhao H; Hu Y; Hao S; Shen Q; Liu J; Li H; Xiao Y; Li L; Wang L; Liu X ACS Appl Mater Interfaces; 2020 Feb; 12(8):9268-9276. PubMed ID: 32031362 [TBL] [Abstract][Full Text] [Related]
12. Nickel-rich layered microspheres cathodes: lithium/nickel disordering and electrochemical performance. Fu C; Li G; Luo D; Li Q; Fan J; Li L ACS Appl Mater Interfaces; 2014 Sep; 6(18):15822-31. PubMed ID: 25203668 [TBL] [Abstract][Full Text] [Related]
13. Role of Mn content on the electrochemical properties of nickel-rich layered LiNi(0.8-x)Co(0.1)Mn(0.1+x)O₂ (0.0 ≤ x ≤ 0.08) cathodes for lithium-ion batteries. Zheng J; Kan WH; Manthiram A ACS Appl Mater Interfaces; 2015 Apr; 7(12):6926-34. PubMed ID: 25756196 [TBL] [Abstract][Full Text] [Related]
14. Surface Modification of Ni-Rich LiNi Becker D; Börner M; Nölle R; Diehl M; Klein S; Rodehorst U; Schmuch R; Winter M; Placke T ACS Appl Mater Interfaces; 2019 May; 11(20):18404-18414. PubMed ID: 31046233 [TBL] [Abstract][Full Text] [Related]
15. Suppressing the Structure Deterioration of Ni-Rich LiNi Zhang J; Yang Z; Gao R; Gu L; Hu Z; Liu X ACS Appl Mater Interfaces; 2017 Sep; 9(35):29794-29803. PubMed ID: 28799736 [TBL] [Abstract][Full Text] [Related]
16. The Effects of Reversibility of H2-H3 Phase Transition on Ni-Rich Layered Oxide Cathode for High-Energy Lithium-Ion Batteries. Chen J; Yang H; Li T; Liu C; Tong H; Chen J; Liu Z; Xia L; Chen Z; Duan J; Li L Front Chem; 2019; 7():500. PubMed ID: 31380345 [TBL] [Abstract][Full Text] [Related]
17. Zinc-Doped High-Nickel, Low-Cobalt Layered Oxide Cathodes for High-Energy-Density Lithium-Ion Batteries. Cui Z; Xie Q; Manthiram A ACS Appl Mater Interfaces; 2021 Apr; 13(13):15324-15332. PubMed ID: 33760578 [TBL] [Abstract][Full Text] [Related]
18. Improvement of the Cycling Performance and Thermal Stability of Lithium-Ion Cells by Double-Layer Coating of Cathode Materials with Al₂O₃ Nanoparticles and Conductive Polymer. Lee YS; Shin WK; Kannan AG; Koo SM; Kim DW ACS Appl Mater Interfaces; 2015 Jul; 7(25):13944-51. PubMed ID: 26083766 [TBL] [Abstract][Full Text] [Related]
19. Systematic Optimization of Battery Materials: Key Parameter Optimization for the Scalable Synthesis of Uniform, High-Energy, and High Stability LiNi Ren D; Shen Y; Yang Y; Shen L; Levin BDA; Yu Y; Muller DA; Abruña HD ACS Appl Mater Interfaces; 2017 Oct; 9(41):35811-35819. PubMed ID: 28938066 [TBL] [Abstract][Full Text] [Related]
20. Enhancement of Structural, Electrochemical, and Thermal Properties of High-Energy Density Ni-Rich LiNi Levartovsky Y; Chakraborty A; Kunnikuruvan S; Maiti S; Grinblat J; Talianker M; Major DT; Aurbach D ACS Appl Mater Interfaces; 2021 Jul; 13(29):34145-34156. PubMed ID: 34256562 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]