BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 27571037)

  • 1. Programmed Transport and Release of Cells by Self-Propelled Micromotors.
    Yoshizumi Y; Okubo K; Yokokawa M; Suzuki H
    Langmuir; 2016 Sep; 32(37):9381-8. PubMed ID: 27571037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radioactive Uranium Preconcentration
    Ying Y; Pourrahimi AM; Sofer Z; Matějková S; Pumera M
    ACS Nano; 2019 Oct; 13(10):11477-11487. PubMed ID: 31592633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrinsic Properties Enabled Metal Organic Framework Micromotors for Highly Efficient Self-Propulsion and Enhanced Antibacterial Therapy.
    Liu X; Sun X; Peng Y; Wang Y; Xu D; Chen W; Wang W; Yan X; Ma X
    ACS Nano; 2022 Sep; 16(9):14666-14678. PubMed ID: 36018321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organized self-assembly of Janus micromotors with hydrophobic hemispheres.
    Gao W; Pei A; Feng X; Hennessy C; Wang J
    J Am Chem Soc; 2013 Jan; 135(3):998-1001. PubMed ID: 23286304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial micromotors in the mouse's stomach: a step toward in vivo use of synthetic motors.
    Gao W; Dong R; Thamphiwatana S; Li J; Gao W; Zhang L; Wang J
    ACS Nano; 2015 Jan; 9(1):117-23. PubMed ID: 25549040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spiropyran-Decorated SiO₂-Pt Janus Micromotor: Preparation and Light-Induced Dynamic Self-Assembly and Disassembly.
    Zhang Q; Dong R; Chang X; Ren B; Tong Z
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24585-91. PubMed ID: 26488455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autonomous movement of controllable assembled Janus capsule motors.
    Wu Y; Wu Z; Lin X; He Q; Li J
    ACS Nano; 2012 Dec; 6(12):10910-6. PubMed ID: 23153409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bubble-propelled micromotors for enhanced transport of passive tracers.
    Orozco J; Jurado-Sánchez B; Wagner G; Gao W; Vazquez-Duhalt R; Sattayasamitsathit S; Galarnyk M; Cortés A; Saintillan D; Wang J
    Langmuir; 2014 May; 30(18):5082-7. PubMed ID: 24754608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light controlled 3D micromotors powered by bacteria.
    Vizsnyiczai G; Frangipane G; Maggi C; Saglimbeni F; Bianchi S; Di Leonardo R
    Nat Commun; 2017 Jun; 8():15974. PubMed ID: 28656975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of Zinpyr-1 for the investigation of zinc signals in Escherichia coli.
    Haase H; Hebel S; Engelhardt G; Rink L
    Biometals; 2013 Feb; 26(1):167-77. PubMed ID: 23324851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-propelled activated carbon Janus micromotors for efficient water purification.
    Jurado-Sánchez B; Sattayasamitsathit S; Gao W; Santos L; Fedorak Y; Singh VV; Orozco J; Galarnyk M; Wang J
    Small; 2015 Jan; 11(4):499-506. PubMed ID: 25207503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning the Redox Properties of a Nonheme Iron(III)-Peroxo Complex Binding Redox-Inactive Zinc Ions by Water Molecules.
    Lee YM; Bang S; Yoon H; Bae SH; Hong S; Cho KB; Sarangi R; Fukuzumi S; Nam W
    Chemistry; 2015 Jul; 21(30):10676-80. PubMed ID: 26096281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metallothionein regulates intracellular zinc signaling during CD4(+) T cell activation.
    Rice JM; Zweifach A; Lynes MA
    BMC Immunol; 2016 Jun; 17(1):13. PubMed ID: 27251638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the efficiency of autonomous nano- and microscale motors.
    Wang W; Chiang TY; Velegol D; Mallouk TE
    J Am Chem Soc; 2013 Jul; 135(28):10557-65. PubMed ID: 23795959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the electron transfer of a ferrocene redox probe and a histidine-tagged hemoprotein specifically bound to a nitrilotriacetic-terminated self-assembled monolayer.
    Balland V; Lecomte S; Limoges B
    Langmuir; 2009 Jun; 25(11):6532-42. PubMed ID: 19419181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption and release behavior of bare and DNA-wrapped-carbon nanotubes on self-assembled monolayer surface.
    Zheng D; Li X; Ye J
    Bioelectrochemistry; 2009 Feb; 74(2):240-5. PubMed ID: 18829397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-oscillating surface of gel for autonomous mass transport.
    Yoshida R; Murase Y
    Colloids Surf B Biointerfaces; 2012 Nov; 99():60-6. PubMed ID: 22019050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular aspects of human cellular zinc homeostasis: redox control of zinc potentials and zinc signals.
    Maret W
    Biometals; 2009 Feb; 22(1):149-57. PubMed ID: 19130267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical metal deposition on top of an organic monolayer.
    Qu D; Uosaki K
    J Phys Chem B; 2006 Sep; 110(35):17570-7. PubMed ID: 16942100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Functions of Metamorphic Metallothioneins in Zinc and Copper Metabolism.
    Krężel A; Maret W
    Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28598392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.