These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 27571103)

  • 1. Natural Inhibitors of Snake Venom Metalloendopeptidases: History and Current Challenges.
    Bastos VA; Gomes-Neto F; Perales J; Neves-Ferreira AG; Valente RH
    Toxins (Basel); 2016 Aug; 8(9):. PubMed ID: 27571103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the Snake Venom Metalloproteinases: An Interview with Jay Fox and José María Gutiérrez.
    Fox JW; Gutiérrez JM
    Toxins (Basel); 2017 Jan; 9(1):. PubMed ID: 28275208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Varespladib (LY315920) Appears to Be a Potent, Broad-Spectrum, Inhibitor of Snake Venom Phospholipase A2 and a Possible Pre-Referral Treatment for Envenomation.
    Lewin M; Samuel S; Merkel J; Bickler P
    Toxins (Basel); 2016 Aug; 8(9):. PubMed ID: 27571102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct Inhibitory Effects of Carbon Monoxide on Six Venoms Containing Fibrinogenolytic Metalloproteinases.
    Nielsen VG; Losada PA
    Basic Clin Pharmacol Toxicol; 2017 Feb; 120(2):207-212. PubMed ID: 27546530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current Knowledge on Snake Dry Bites.
    Pucca MB; Knudsen C; S Oliveira I; Rimbault C; A Cerni F; Wen FH; Sachett J; Sartim MA; Laustsen AH; Monteiro WM
    Toxins (Basel); 2020 Oct; 12(11):. PubMed ID: 33105644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hepatic inhibitors expression profiling of venom-challenged Sinonatrix annularis and antidotal activities.
    Lian Q; Zhong L; Fu K; Ji Y; Zhang X; Liu C; Huang C
    Biomed Pharmacother; 2022 Dec; 156():113900. PubMed ID: 36283224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plant natural products active against snake bite--the molecular approach.
    Mors WB; Nascimento MC; Pereira BM; Pereira NA
    Phytochemistry; 2000 Nov; 55(6):627-42. PubMed ID: 11130675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natural protease inhibitors to hemorrhagins in snake venoms and their potential use in medicine.
    Pérez JC; Sánchez EE
    Toxicon; 1999 May; 37(5):703-28. PubMed ID: 10219984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endogenous thrombin potential as a novel method for the characterization of procoagulant snake venoms and the efficacy of antivenom.
    Isbister GK; Woods D; Alley S; O'Leary MA; Seldon M; Lincz LF
    Toxicon; 2010 Aug; 56(1):75-85. PubMed ID: 20338189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and characterization of a novel metalloprotease inhibitor from Bothrops alternatus snake serum.
    Palacio TZ; Santos-Filho NA; Rosa JC; Ferreira RS; Barraviera B; Sampaio SV
    Int J Biol Macromol; 2017 May; 98():436-446. PubMed ID: 28163123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibitors of snake venoms and development of new therapeutics.
    Sánchez EE; Rodríguez-Acosta A
    Immunopharmacol Immunotoxicol; 2008; 30(4):647-78. PubMed ID: 18686104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring snake venom proteomes: multifaceted analyses for complex toxin mixtures.
    Fox JW; Serrano SM
    Proteomics; 2008 Feb; 8(4):909-20. PubMed ID: 18203266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Timeline of key events in snake venom metalloproteinase research.
    Fox JW; Serrano SM
    J Proteomics; 2009 Mar; 72(2):200-9. PubMed ID: 19344655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. At-line nanofractionation with parallel mass spectrometry and bioactivity assessment for the rapid screening of thrombin and factor Xa inhibitors in snake venoms.
    Mladic M; Zietek BM; Iyer JK; Hermarij P; Niessen WM; Somsen GW; Kini RM; Kool J
    Toxicon; 2016 Feb; 110():79-89. PubMed ID: 26708656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution crystal structure of the snake venom metalloproteinase BaP1 complexed with a peptidomimetic: insight into inhibitor binding.
    Lingott T; Schleberger C; Gutiérrez JM; Merfort I
    Biochemistry; 2009 Jul; 48(26):6166-74. PubMed ID: 19485419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel in vitro assays for assessing the haemorrhagic activity of snake venoms and for demonstration of venom metalloproteinase inhibitors.
    Bee A; Theakston RD; Harrison RA; Carter SD
    Toxicon; 2001 Sep; 39(9):1429-34. PubMed ID: 11384733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Jararhagin, a hemorrhagic snake venom metalloproteinase from Bothrops jararaca.
    Moura-da-Silva AM; Baldo C
    Toxicon; 2012 Sep; 60(3):280-9. PubMed ID: 22534074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Snake venom metalloproteinases: their role in the pathogenesis of local tissue damage.
    Gutiérrez JM; Rucavado A
    Biochimie; 2000; 82(9-10):841-50. PubMed ID: 11086214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery of small molecule inhibitors for the snake venom metalloprotease BaP1 using in silico and in vitro tests.
    Villalta-Romero F; Borro L; Mandic B; Escalante T; Rucavado A; Gutiérrez JM; Neshich G; Tasic L
    Bioorg Med Chem Lett; 2017 May; 27(9):2018-2022. PubMed ID: 28347665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quercetin-3-O-rhamnoside from Euphorbia hirta protects against snake Venom induced toxicity.
    Gopi K; Anbarasu K; Renu K; Jayanthi S; Vishwanath BS; Jayaraman G
    Biochim Biophys Acta; 2016 Jul; 1860(7):1528-40. PubMed ID: 27033089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.