BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 27571247)

  • 41. The role of the N-terminal domain of human apurinic/apyrimidinic endonuclease 1, APE1, in DNA glycosylase stimulation.
    Kladova OA; Bazlekowa-Karaban M; Baconnais S; Piétrement O; Ishchenko AA; Matkarimov BT; Iakovlev DA; Vasenko A; Fedorova OS; Le Cam E; Tudek B; Kuznetsov NA; Saparbaev M
    DNA Repair (Amst); 2018 Apr; 64():10-25. PubMed ID: 29475157
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Surprising repair activities of nonpolar analogs of 8-oxoG expose features of recognition and catalysis by base excision repair glycosylases.
    McKibbin PL; Kobori A; Taniguchi Y; Kool ET; David SS
    J Am Chem Soc; 2012 Jan; 134(3):1653-61. PubMed ID: 22175854
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Initiation of base excision repair: glycosylase mechanisms and structures.
    McCullough AK; Dodson ML; Lloyd RS
    Annu Rev Biochem; 1999; 68():255-85. PubMed ID: 10872450
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Coordination of MYH DNA glycosylase and APE1 endonuclease activities via physical interactions.
    Luncsford PJ; Manvilla BA; Patterson DN; Malik SS; Jin J; Hwang BJ; Gunther R; Kalvakolanu S; Lipinski LJ; Yuan W; Lu W; Drohat AC; Lu AL; Toth EA
    DNA Repair (Amst); 2013 Dec; 12(12):1043-52. PubMed ID: 24209961
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Unique Hydrogen Bonding of Adenine with the Oxidatively Damaged Base 8-Oxoguanine Enables Specific Recognition and Repair by DNA Glycosylase MutY.
    Majumdar C; McKibbin PL; Krajewski AE; Manlove AH; Lee JK; David SS
    J Am Chem Soc; 2020 Dec; 142(48):20340-20350. PubMed ID: 33202125
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hydrolysis of the damaged deoxythymidine glycol nucleoside and comparison to canonical DNA.
    Navarro-Whyte L; Kellie JL; Lenz SA; Wetmore SD
    Phys Chem Chem Phys; 2013 Nov; 15(44):19343-52. PubMed ID: 24121561
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ribose-protonated DNA base excision repair: a combined theoretical and experimental study.
    Sadeghian K; Flaig D; Blank ID; Schneider S; Strasser R; Stathis D; Winnacker M; Carell T; Ochsenfeld C
    Angew Chem Int Ed Engl; 2014 Sep; 53(38):10044-8. PubMed ID: 25065673
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Uracil-DNA glycosylase-DNA substrate and product structures: conformational strain promotes catalytic efficiency by coupled stereoelectronic effects.
    Parikh SS; Walcher G; Jones GD; Slupphaug G; Krokan HE; Blackburn GM; Tainer JA
    Proc Natl Acad Sci U S A; 2000 May; 97(10):5083-8. PubMed ID: 10805771
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Escherichia coli 3-methyladenine DNA glycosylase AlkA has a remarkably versatile active site.
    O'Brien PJ; Ellenberger T
    J Biol Chem; 2004 Jun; 279(26):26876-84. PubMed ID: 15126496
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nonspecific DNA binding and coordination of the first two steps of base excision repair.
    Baldwin MR; O'Brien PJ
    Biochemistry; 2010 Sep; 49(36):7879-91. PubMed ID: 20701268
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Critical Sites of DNA Backbone Integrity for Damaged Base Removal by Formamidopyrimidine-DNA Glycosylase.
    Endutkin AV; Zharkov DO
    Biochemistry; 2019 Jun; 58(24):2740-2749. PubMed ID: 31120733
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Efficient recognition of an unpaired lesion by a DNA repair glycosylase.
    Lyons DM; O'Brien PJ
    J Am Chem Soc; 2009 Dec; 131(49):17742-3. PubMed ID: 19924854
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Base excision repair system targeting DNA adducts of trioxacarcin/LL-D49194 antibiotics for self-resistance.
    Chen X; Bradley NP; Lu W; Wahl KL; Zhang M; Yuan H; Hou XF; Eichman BF; Tang GL
    Nucleic Acids Res; 2022 Mar; 50(5):2417-2430. PubMed ID: 35191495
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Base excision repair of the N-(2-deoxy-d-erythro-pentofuranosyl)-urea lesion by the hNEIL1 glycosylase.
    Tomar R; Minko IG; Sharma P; Kellum AH; Lei L; Harp JM; Iverson TM; Lloyd RS; Egli M; Stone MP
    Nucleic Acids Res; 2023 May; 51(8):3754-3769. PubMed ID: 37014002
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tautomerization-dependent recognition and excision of oxidation damage in base-excision DNA repair.
    Zhu C; Lu L; Zhang J; Yue Z; Song J; Zong S; Liu M; Stovicek O; Gao YQ; Yi C
    Proc Natl Acad Sci U S A; 2016 Jul; 113(28):7792-7. PubMed ID: 27354518
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Crystallizing thoughts about DNA base excision repair.
    Hollis T; Lau A; Ellenberger T
    Prog Nucleic Acid Res Mol Biol; 2001; 68():305-14. PubMed ID: 11554308
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Kinetic mechanism for the flipping and excision of 1,N(6)-ethenoadenine by AlkA.
    Taylor EL; O'Brien PJ
    Biochemistry; 2015 Jan; 54(3):898-908. PubMed ID: 25537480
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Solution structure and base perturbation studies reveal a novel mode of alkylated base recognition by 3-methyladenine DNA glycosylase I.
    Cao C; Kwon K; Jiang YL; Drohat AC; Stivers JT
    J Biol Chem; 2003 Nov; 278(48):48012-20. PubMed ID: 13129925
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Human DNA glycosylases involved in the repair of oxidatively damaged DNA.
    Ide H; Kotera M
    Biol Pharm Bull; 2004 Apr; 27(4):480-5. PubMed ID: 15056851
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Standard role for a conserved aspartate or more direct involvement in deglycosylation? An ONIOM and MD investigation of adenine-DNA glycosylase.
    Kellie JL; Wilson KA; Wetmore SD
    Biochemistry; 2013 Dec; 52(48):8753-65. PubMed ID: 24168684
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.