These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
81 related articles for article (PubMed ID: 27571432)
41. Blockade of interleukin-6 signaling suppressed cochlear inflammatory response and improved hearing impairment in noise-damaged mice cochlea. Wakabayashi K; Fujioka M; Kanzaki S; Okano HJ; Shibata S; Yamashita D; Masuda M; Mihara M; Ohsugi Y; Ogawa K; Okano H Neurosci Res; 2010 Apr; 66(4):345-52. PubMed ID: 20026135 [TBL] [Abstract][Full Text] [Related]
42. Enhanced expression of C/EBP homologous protein (CHOP) precedes degeneration of fibrocytes in the lateral wall after acute cochlear mitochondrial dysfunction induced by 3-nitropropionic acid. Fujinami Y; Mutai H; Kamiya K; Mizutari K; Fujii M; Matsunaga T Neurochem Int; 2010 Feb; 56(3):487-94. PubMed ID: 20026213 [TBL] [Abstract][Full Text] [Related]
43. Functional and morphological effects of styrene on the auditory system of the rat. Mäkitie A; Pirvola U; Pyykkö I; Sakakibara H; Riihimäki V; Ylikoski J Arch Toxicol; 2002 Feb; 76(1):40-7. PubMed ID: 11875623 [TBL] [Abstract][Full Text] [Related]
44. beta-Bungarotoxin application to the round window: an in vivo deafferentation model of the inner ear. Palmgren B; Jin Z; Ma H; Jiao Y; Olivius P Hear Res; 2010 Jun; 265(1-2):70-6. PubMed ID: 20184947 [TBL] [Abstract][Full Text] [Related]
45. Involvement of calpain in 4-hydroxynonenal-induced disruption of gap junction-mediated intercellular communication among fibrocytes in primary cultures derived from the cochlear spiral ligament. Yamaguchi T; Yoneyama M; Hinoi E; Ogita K J Pharmacol Sci; 2015 Oct; 129(2):127-34. PubMed ID: 26499182 [TBL] [Abstract][Full Text] [Related]
46. Age-related changes in auditory nerve-inner hair cell connections, hair cell numbers, auditory brain stem response and gap detection in UM-HET4 mice. Altschuler RA; Dolan DF; Halsey K; Kanicki A; Deng N; Martin C; Eberle J; Kohrman DC; Miller RA; Schacht J Neuroscience; 2015 Apr; 292():22-33. PubMed ID: 25665752 [TBL] [Abstract][Full Text] [Related]
47. Effects of gap junction uncoupling in the gerbil cochlea. Spiess AC; Lang H; Schulte BA; Spicer SS; Schmiedt RA Laryngoscope; 2002 Sep; 112(9):1635-41. PubMed ID: 12352678 [TBL] [Abstract][Full Text] [Related]
48. Endocochlear potential in focal lesions of the guinea pig cochlea. Wu R; Hoshino T; Nagura M Hear Res; 1999 Feb; 128(1-2):103-11. PubMed ID: 10082290 [TBL] [Abstract][Full Text] [Related]
49. Gentamicin affects connexin 26 expression in the cochlear lateral wall. Hu P; Lai R; Xie D B-ENT; 2012; 8(2):77-84. PubMed ID: 22896926 [TBL] [Abstract][Full Text] [Related]
50. Effects of substance P during the recovery of hearing function after noise-induced hearing loss. Kanagawa E; Sugahara K; Hirose Y; Mikuriya T; Shimogori H; Yamashita H Brain Res; 2014 Sep; 1582():187-96. PubMed ID: 25064433 [TBL] [Abstract][Full Text] [Related]
51. Transient cochlear ischemia causes delayed cell death in the organ of Corti: an experimental study in gerbils. Koga K; Hakuba N; Watanabe F; Shudou M; Nakagawa T; Gyo K J Comp Neurol; 2003 Feb; 456(2):105-11. PubMed ID: 12509868 [TBL] [Abstract][Full Text] [Related]
52. Decline in the endocochlear potential corresponds to decreased Na,K-ATPase activity in the lateral wall of quiet-aged gerbils. Gratton MA; Smyth BJ; Lam CF; Boettcher FA; Schmiedt RA Hear Res; 1997 Jun; 108(1-2):9-16. PubMed ID: 9213117 [TBL] [Abstract][Full Text] [Related]
54. Noise induced reversible changes of cochlear ribbon synapses contribute to temporary hearing loss in mice. Shi L; Liu K; Wang H; Zhang Y; Hong Z; Wang M; Wang X; Jiang X; Yang S Acta Otolaryngol; 2015; 135(11):1093-102. PubMed ID: 26139555 [TBL] [Abstract][Full Text] [Related]
55. Measurements of ionic concentrations along with endocochlear potential in wild-type and claudin 14 knockout mice. Shiraiwa Y; Daikoku E; Saito M; Yamashita Y; Abe T; Ono F; Kubota T Auris Nasus Larynx; 2018 Jun; 45(3):421-426. PubMed ID: 28811056 [TBL] [Abstract][Full Text] [Related]
56. Pathology of the cochlea following a spontaneous mutation in DBA/2 mice. Hultcrantz M; Spångberg ML Acta Otolaryngol; 1997 Sep; 117(5):689-95. PubMed ID: 9349864 [TBL] [Abstract][Full Text] [Related]
57. Altered cochlear fibrocytes in a mouse model of DFN3 nonsyndromic deafness. Minowa O; Ikeda K; Sugitani Y; Oshima T; Nakai S; Katori Y; Suzuki M; Furukawa M; Kawase T; Zheng Y; Ogura M; Asada Y; Watanabe K; Yamanaka H; Gotoh S; Nishi-Takeshima M; Sugimoto T; Kikuchi T; Takasaka T; Noda T Science; 1999 Aug; 285(5432):1408-11. PubMed ID: 10464101 [TBL] [Abstract][Full Text] [Related]
58. Tonotopic mapping in auditory cortex of the adult chinchilla with amikacin-induced cochlear lesions. Kakigi A; Hirakawa H; Harel N; Mount RJ; Harrison RV Audiology; 2000; 39(3):153-60. PubMed ID: 10905401 [TBL] [Abstract][Full Text] [Related]
59. Pharmacological inhibition of cochlear mitochondrial respiratory chain induces secondary inflammation in the lateral wall: a potential therapeutic target for sensorineural hearing loss. Fujioka M; Okamoto Y; Shinden S; Okano HJ; Okano H; Ogawa K; Matsunaga T PLoS One; 2014; 9(3):e90089. PubMed ID: 24614528 [TBL] [Abstract][Full Text] [Related]
60. Classification and culture of spiral ligament fibrocytes from mice. Suko T; Ichimiya I; Yoshida K; Suzuki M; Mogi G Hear Res; 2000 Feb; 140(1-2):137-44. PubMed ID: 10675641 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]