These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 27571432)

  • 61. Considering gene therapy to protect from X-linked deafness DFNX2 and associated neurodevelopmental disorders.
    Defourny J
    Ibrain; 2022; 8(4):431-441. PubMed ID: 37786584
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Application of simulated annealing for estimating BAEPs in endocochlear pathologies.
    Naït-Ali A; Siarry P
    Med Eng Phys; 2002 Jul; 24(6):385-92. PubMed ID: 12135647
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The Acute Effects of Furosemide on Na-K-Cl Cotransporter-1, Fetuin-A and Pigment Epithelium-Derived Factor in the Guinea Pig Cochlea.
    Edvardsson Rasmussen J; Lundström P; Eriksson PO; Rask-Andersen H; Liu W; Laurell G
    Front Mol Neurosci; 2022; 15():842132. PubMed ID: 35392272
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Late-phase recovery in the cochlear lateral wall following severe degeneration by acute energy failure.
    Mizutari K; Nakagawa S; Mutai H; Fujii M; Ogawa K; Matsunaga T
    Brain Res; 2011 Oct; 1419():1-11. PubMed ID: 21925650
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Caspase inhibitor facilitates recovery of hearing by protecting the cochlear lateral wall from acute cochlear mitochondrial dysfunction.
    Mizutari K; Matsunaga T; Kamiya K; Fujinami Y; Fujii M; Ogawa K
    J Neurosci Res; 2008 Jan; 86(1):215-22. PubMed ID: 17722114
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Long-lasting changes in the cochlear K+ recycling structures after acute energy failure.
    Takiguchi Y; Sun GW; Ogawa K; Matsunaga T
    Neurosci Res; 2013; 77(1-2):33-41. PubMed ID: 23827367
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Korean red ginseng ameliorates acute 3-nitropropionic acid-induced cochlear damage in mice.
    Tian C; Kim YH; Kim YC; Park KT; Kim SW; Kim YJ; Lim HJ; Choung YH
    Neurotoxicology; 2013 Jan; 34():42-50. PubMed ID: 23164932
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Spontaneous recovery of cochlear fibrocytes after severe degeneration caused by acute energy failure.
    Mizutari K
    Front Pharmacol; 2014; 5():198. PubMed ID: 25206337
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Supporting sensory transduction: cochlear fluid homeostasis and the endocochlear potential.
    Wangemann P
    J Physiol; 2006 Oct; 576(Pt 1):11-21. PubMed ID: 16857713
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Recovery of endocochlear potential after severe damage to lateral wall fibrocytes following acute cochlear energy failure.
    Kitao K; Mizutari K; Nakagawa S; Matsunaga T; Fukuda S; Fujii M
    Neuroreport; 2016 Oct; 27(15):1159-66. PubMed ID: 27571432
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Significance of spiral ligament fibrocytes with cochlear inflammation.
    Ichimiya I; Yoshida K; Hirano T; Suzuki M; Mogi G
    Int J Pediatr Otorhinolaryngol; 2000 Nov; 56(1):45-51. PubMed ID: 11074115
    [TBL] [Abstract][Full Text] [Related]  

  • 72.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 73.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 74.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 75.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 76.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 77.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 78.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 79.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 80.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.