BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 27571472)

  • 1. Comparative Effects of Ions, Molecular Crowding, and Bulk DNA on the Damage Search Mechanisms of hOGG1 and hUNG.
    Cravens SL; Stivers JT
    Biochemistry; 2016 Sep; 55(37):5230-42. PubMed ID: 27571472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrostatic properties of complexes along a DNA glycosylase damage search pathway.
    Cravens SL; Hobson M; Stivers JT
    Biochemistry; 2014 Dec; 53(48):7680-92. PubMed ID: 25408964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular crowding enhances facilitated diffusion of two human DNA glycosylases.
    Cravens SL; Schonhoft JD; Rowland MM; Rodriguez AA; Anderson BG; Stivers JT
    Nucleic Acids Res; 2015 Apr; 43(8):4087-97. PubMed ID: 25845592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hide and seek: How do DNA glycosylases locate oxidatively damaged DNA bases amidst a sea of undamaged bases?
    Lee AJ; Wallace SS
    Free Radic Biol Med; 2017 Jun; 107():170-178. PubMed ID: 27865982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of recognition and repair of damaged DNA by human 8-oxoguanine DNA glycosylase hOGG1.
    Kuznetsov NA; Koval VV; Fedorova OS
    Biochemistry (Mosc); 2011 Jan; 76(1):118-30. PubMed ID: 21568844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA repair mechanisms for the recognition and removal of damaged DNA bases.
    Mol CD; Parikh SS; Putnam CD; Lo TP; Tainer JA
    Annu Rev Biophys Biomol Struct; 1999; 28():101-28. PubMed ID: 10410797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic opening of DNA during the enzymatic search for a damaged base.
    Cao C; Jiang YL; Stivers JT; Song F
    Nat Struct Mol Biol; 2004 Dec; 11(12):1230-6. PubMed ID: 15558051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lesion search and recognition by thymine DNA glycosylase revealed by single molecule imaging.
    Buechner CN; Maiti A; Drohat AC; Tessmer I
    Nucleic Acids Res; 2015 Mar; 43(5):2716-29. PubMed ID: 25712093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human alkyladenine DNA glycosylase employs a processive search for DNA damage.
    Hedglin M; O'Brien PJ
    Biochemistry; 2008 Nov; 47(44):11434-45. PubMed ID: 18839966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human ribosomal protein S3 (hRpS3) interacts with uracil-DNA glycosylase (hUNG) and stimulates its glycosylase activity.
    Ko SI; Park JH; Park MJ; Kim J; Kang LW; Han YS
    Mutat Res; 2008 Dec; 648(1-2):54-64. PubMed ID: 18973764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure determination of uracil-DNA N-glycosylase from Deinococcus radiodurans in complex with DNA.
    Pedersen HL; Johnson KA; McVey CE; Leiros I; Moe E
    Acta Crystallogr D Biol Crystallogr; 2015 Oct; 71(Pt 10):2137-49. PubMed ID: 26457437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Product inhibition and magnesium modulate the dual reaction mode of hOgg1.
    Morland I; Luna L; Gustad E; Seeberg E; Bjørås M
    DNA Repair (Amst); 2005 Mar; 4(3):381-7. PubMed ID: 15661661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of Facilitated Diffusion of DNA Repair Proteins in Crowded Environment: Case Study with Human Uracil DNA Glycosylase.
    Dey P; Bhattacherjee A
    J Phys Chem B; 2019 Dec; 123(49):10354-10364. PubMed ID: 31725289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different organization of base excision repair of uracil in DNA in nuclei and mitochondria and selective upregulation of mitochondrial uracil-DNA glycosylase after oxidative stress.
    Akbari M; Otterlei M; Peña-Diaz J; Krokan HE
    Neuroscience; 2007 Apr; 145(4):1201-12. PubMed ID: 17101234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AP-Endonuclease 1 Accelerates Turnover of Human 8-Oxoguanine DNA Glycosylase by Preventing Retrograde Binding to the Abasic-Site Product.
    Esadze A; Rodriguez G; Cravens SL; Stivers JT
    Biochemistry; 2017 Apr; 56(14):1974-1986. PubMed ID: 28345889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disordered N-Terminal Domain of Human Uracil DNA Glycosylase (hUNG2) Enhances DNA Translocation.
    Rodriguez G; Esadze A; Weiser BP; Schonhoft JD; Cole PA; Stivers JT
    ACS Chem Biol; 2017 Sep; 12(9):2260-2263. PubMed ID: 28787572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA translocation by human uracil DNA glycosylase: role of DNA phosphate charge.
    Schonhoft JD; Kosowicz JG; Stivers JT
    Biochemistry; 2013 Apr; 52(15):2526-35. PubMed ID: 23506309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The N-terminal domain of uracil-DNA glycosylase: Roles for disordered regions.
    Perkins JL; Zhao L
    DNA Repair (Amst); 2021 May; 101():103077. PubMed ID: 33640758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of damaged DNA bases by DNA glycosylase enzymes.
    Friedman JI; Stivers JT
    Biochemistry; 2010 Jun; 49(24):4957-67. PubMed ID: 20469926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The trajectory of intrahelical lesion recognition and extrusion by the human 8-oxoguanine DNA glycosylase.
    Shigdel UK; Ovchinnikov V; Lee SJ; Shih JA; Karplus M; Nam K; Verdine GL
    Nat Commun; 2020 Sep; 11(1):4437. PubMed ID: 32895378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.