These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 27571472)

  • 41. XRCC1 interactions with multiple DNA glycosylases: a model for its recruitment to base excision repair.
    Campalans A; Marsin S; Nakabeppu Y; O'connor TR; Boiteux S; Radicella JP
    DNA Repair (Amst); 2005 Jul; 4(7):826-35. PubMed ID: 15927541
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Distinguishing Specific and Nonspecific Complexes of Alkyladenine DNA Glycosylase.
    Taylor EL; Kesavan PM; Wolfe AE; O'Brien PJ
    Biochemistry; 2018 Jul; 57(30):4440-4454. PubMed ID: 29940097
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structure of a repair enzyme interrogating undamaged DNA elucidates recognition of damaged DNA.
    Banerjee A; Yang W; Karplus M; Verdine GL
    Nature; 2005 Mar; 434(7033):612-8. PubMed ID: 15800616
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mimicking damaged DNA with a small molecule inhibitor of human UNG2.
    Krosky DJ; Bianchet MA; Seiple L; Chung S; Amzel LM; Stivers JT
    Nucleic Acids Res; 2006; 34(20):5872-9. PubMed ID: 17062624
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The mechanism of the glycosylase reaction with hOGG1 base-excision repair enzyme: concerted effect of Lys249 and Asp268 during excision of 8-oxoguanine.
    Šebera J; Hattori Y; Sato D; Reha D; Nencka R; Kohno T; Kojima C; Tanaka Y; Sychrovský V
    Nucleic Acids Res; 2017 May; 45(9):5231-5242. PubMed ID: 28334993
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Strikingly different properties of uracil-DNA glycosylases UNG2 and SMUG1 may explain divergent roles in processing of genomic uracil.
    Doseth B; Ekre C; Slupphaug G; Krokan HE; Kavli B
    DNA Repair (Amst); 2012 Jun; 11(6):587-93. PubMed ID: 22483865
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microscopic mechanism of DNA damage searching by hOGG1.
    Rowland MM; Schonhoft JD; McKibbin PL; David SS; Stivers JT
    Nucleic Acids Res; 2014 Aug; 42(14):9295-303. PubMed ID: 25016526
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Measurement of nanoscale DNA translocation by uracil DNA glycosylase in human cells.
    Esadze A; Rodriguez G; Weiser BP; Cole PA; Stivers JT
    Nucleic Acids Res; 2017 Dec; 45(21):12413-12424. PubMed ID: 29036472
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Binding of specific DNA base-pair mismatches by N-methylpurine-DNA glycosylase and its implication in initial damage recognition.
    Biswas T; Clos LJ; SantaLucia J; Mitra S; Roy R
    J Mol Biol; 2002 Jul; 320(3):503-13. PubMed ID: 12096906
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Affinity purification and comparative analysis of two distinct human uracil-DNA glycosylases.
    Caradonna S; Ladner R; Hansbury M; Kosciuk M; Lynch F; Muller S
    Exp Cell Res; 1996 Feb; 222(2):345-59. PubMed ID: 8598223
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Action mechanism of human SMUG1 uracil-DNA glycosylase.
    Matsubara M; Tanaka T; Terato H; Ide H
    Nucleic Acids Symp Ser (Oxf); 2005; (49):295-6. PubMed ID: 17150750
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Base excision repair initiation revealed by crystal structures and binding kinetics of human uracil-DNA glycosylase with DNA.
    Parikh SS; Mol CD; Slupphaug G; Bharati S; Krokan HE; Tainer JA
    EMBO J; 1998 Sep; 17(17):5214-26. PubMed ID: 9724657
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The origins of high-affinity enzyme binding to an extrahelical DNA base.
    Krosky DJ; Song F; Stivers JT
    Biochemistry; 2005 Apr; 44(16):5949-59. PubMed ID: 15835884
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Interplay between DNA N-glycosylases/AP lyases at multiply damaged sites and biological consequences.
    Eot-Houllier G; Gonera M; Gasparutto D; Giustranti C; Sage E
    Nucleic Acids Res; 2007; 35(10):3355-66. PubMed ID: 17468500
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Correlated cleavage of single- and double-stranded substrates by uracil-DNA glycosylase.
    Sidorenko VS; Mechetin GV; Nevinsky GA; Zharkov DO
    FEBS Lett; 2008 Feb; 582(3):410-4. PubMed ID: 18201572
    [TBL] [Abstract][Full Text] [Related]  

  • 56. DNA glycosylase recognition and catalysis.
    Fromme JC; Banerjee A; Verdine GL
    Curr Opin Struct Biol; 2004 Feb; 14(1):43-9. PubMed ID: 15102448
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Three-State Diffusion Model of DNA Glycosylase Translocation along Stretched DNA as Revealed by Free Energy Landscapes at the All-Atom Level.
    Kim H; Pak Y
    J Chem Theory Comput; 2024 Mar; 20(6):2666-2675. PubMed ID: 38451471
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The effect of p53-RNAi and p53 knockout on human 8-oxoguanine DNA glycosylase (hOgg1) activity.
    Chatterjee A; Mambo E; Osada M; Upadhyay S; Sidransky D
    FASEB J; 2006 Jan; 20(1):112-4. PubMed ID: 16293709
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Uracil-DNA glycosylases SMUG1 and UNG2 coordinate the initial steps of base excision repair by distinct mechanisms.
    Pettersen HS; Sundheim O; Gilljam KM; Slupphaug G; Krokan HE; Kavli B
    Nucleic Acids Res; 2007; 35(12):3879-92. PubMed ID: 17537817
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Computational rationale for the selective inhibition of the herpes simplex virus type 1 uracil-DNA glycosylase enzyme.
    Hendricks U; Crous W; Naidoo KJ
    J Chem Inf Model; 2014 Dec; 54(12):3362-72. PubMed ID: 25369428
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.