These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 27571689)

  • 1. A Photoswitchable Fluorophore for the Real-Time Monitoring of Dynamic Events in Living Organisms.
    Zhang Y; Tang S; Sansalone L; Baker JD; Raymo FM
    Chemistry; 2016 Oct; 22(42):15027-15034. PubMed ID: 27571689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoactivatable BODIPYs designed to monitor the dynamics of supramolecular nanocarriers.
    Zhang Y; Swaminathan S; Tang S; Garcia-Amorós J; Boulina M; Captain B; Baker JD; Raymo FM
    J Am Chem Soc; 2015 Apr; 137(14):4709-19. PubMed ID: 25794143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Photoactivatable Far-Red/Near-Infrared BODIPY To Monitor Cellular Dynamics in Vivo.
    Sansalone L; Tang S; Garcia-Amorós J; Zhang Y; Nonell S; Baker JD; Captain B; Raymo FM
    ACS Sens; 2018 Jul; 3(7):1347-1353. PubMed ID: 29863337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BODIPYs with Photoactivatable Fluorescence.
    Zhang Y; Zheng Y; Meana Y; Raymo FM
    Chemistry; 2021 Aug; 27(44):11257-11267. PubMed ID: 34062023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photostable and photoswitching fluorescent dyes for super-resolution imaging.
    Minoshima M; Kikuchi K
    J Biol Inorg Chem; 2017 Jul; 22(5):639-652. PubMed ID: 28083655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoswitchable fluorescent dyads incorporating BODIPY and [1,3]oxazine components.
    Deniz E; Ray S; Tomasulo M; Impellizzeri S; Sortino S; Raymo FM
    J Phys Chem A; 2010 Nov; 114(43):11567-75. PubMed ID: 20939622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Twinkle, twinkle little star: photoswitchable fluorophores for super-resolution imaging.
    Chozinski TJ; Gagnon LA; Vaughan JC
    FEBS Lett; 2014 Oct; 588(19):3603-12. PubMed ID: 25010263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence patterning in films of a photoswitchable BODIPY-spiropyran dyad.
    Deniz E; Tomasulo M; Defazio RA; Watson BD; Raymo FM
    Phys Chem Chem Phys; 2010 Oct; 12(37):11630-4. PubMed ID: 20714479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supramolecular strategies to construct biocompatible and photoswitchable fluorescent assemblies.
    Yildiz I; Impellizzeri S; Deniz E; McCaughan B; Callan JF; Raymo FM
    J Am Chem Soc; 2011 Feb; 133(4):871-9. PubMed ID: 21182323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoactivatable BODIPYs for Live-Cell PALM.
    Zhang Y; Zheng Y; Tomassini A; Singh AK; Raymo FM
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoactivation of silicon rhodamines via a light-induced protonation.
    Frei MS; Hoess P; Lampe M; Nijmeijer B; Kueblbeck M; Ellenberg J; Wadepohl H; Ries J; Pitsch S; Reymond L; Johnsson K
    Nat Commun; 2019 Oct; 10(1):4580. PubMed ID: 31594948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of Photoactivated Fluorescent N-Hydroxyoxindoles and Their Application for Cell-Selective Imaging.
    Lai J; Yu A; Yang L; Zhang Y; Shah BP; Lee KB
    Chemistry; 2016 Apr; 22(18):6361-7. PubMed ID: 27004772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Live-Cell Imaging at the Nanoscale with Bioconjugatable and Photoactivatable Fluorophores.
    Zhang Y; Raymo FM
    Bioconjug Chem; 2020 Apr; 31(4):1052-1062. PubMed ID: 32150390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of photoactivatable azido-acyl caged oxazine fluorophores for live-cell imaging.
    Anzalone AV; Chen Z; Cornish VW
    Chem Commun (Camb); 2016 Jul; 52(60):9442-5. PubMed ID: 27377037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic activation of a fluorescent carbazole-oxazine switch.
    Garcia-Amorós J; Swaminathan S; Sortino S; Raymo FM
    Chemistry; 2014 Aug; 20(33):10276-84. PubMed ID: 25056267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrabright photoactivatable fluorophores created by reductive caging.
    Vaughan JC; Jia S; Zhuang X
    Nat Methods; 2012 Dec; 9(12):1181-4. PubMed ID: 23103881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of BODIPY fluorescence by the photoinduced dealkylation of a pyridinium quencher.
    Ragab SS; Swaminathan S; Baker JD; Raymo FM
    Phys Chem Chem Phys; 2013 Sep; 15(36):14851-5. PubMed ID: 23694991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Counting tagged molecules one by one: Quantitative photoactivation and bleaching of photoactivatable fluorophores.
    Kratochvil HT; Ha DG; Zanni MT
    J Chem Phys; 2015 Sep; 143(10):104201. PubMed ID: 26374025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence photoactivation by intermolecular proton transfer.
    Swaminathan S; Petriella M; Deniz E; Cusido J; Baker JD; Bossi ML; Raymo FM
    J Phys Chem A; 2012 Oct; 116(40):9928-33. PubMed ID: 22994311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoactivatable fluorophores for single-molecule localization microscopy of live cells.
    Zhang Y; Raymo FM
    Methods Appl Fluoresc; 2020 May; 8(3):032002. PubMed ID: 32325443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.