BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 27571750)

  • 1. Crystal structure of Clostridium difficile toxin A.
    Chumbler NM; Rutherford SA; Zhang Z; Farrow MA; Lisher JP; Farquhar E; Giedroc DP; Spiller BW; Melnyk RA; Lacy DB
    Nat Microbiol; 2016 Jan; 1():15002. PubMed ID: 27571750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of
    Chumbler NM; Rutherford SA; Zhang Z; Farrow MA; Lisher JP; Farquhar E; Giedroc DP; Spiller BW; Melnyk RA; Lacy DB
    Nat Microbiol; 2016; 1():. PubMed ID: 27512603
    [No Abstract]   [Full Text] [Related]  

  • 3. A neutralizing antibody that blocks delivery of the enzymatic cargo of
    Kroh HK; Chandrasekaran R; Zhang Z; Rosenthal K; Woods R; Jin X; Nyborg AC; Rainey GJ; Warrener P; Melnyk RA; Spiller BW; Lacy DB
    J Biol Chem; 2018 Jan; 293(3):941-952. PubMed ID: 29180448
    [No Abstract]   [Full Text] [Related]  

  • 4. Use of a neutralizing antibody helps identify structural features critical for binding of
    Kroh HK; Chandrasekaran R; Rosenthal K; Woods R; Jin X; Ohi MD; Nyborg AC; Rainey GJ; Warrener P; Spiller BW; Lacy DB
    J Biol Chem; 2017 Sep; 292(35):14401-14412. PubMed ID: 28705932
    [No Abstract]   [Full Text] [Related]  

  • 5. Structure-function analysis of inositol hexakisphosphate-induced autoprocessing in Clostridium difficile toxin A.
    Pruitt RN; Chagot B; Cover M; Chazin WJ; Spiller B; Lacy DB
    J Biol Chem; 2009 Aug; 284(33):21934-21940. PubMed ID: 19553670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autocatalytic processing of Clostridium difficile toxin B. Binding of inositol hexakisphosphate.
    Egerer M; Giesemann T; Herrmann C; Aktories K
    J Biol Chem; 2009 Feb; 284(6):3389-95. PubMed ID: 19047051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clostridium difficile Toxin Biology.
    Aktories K; Schwan C; Jank T
    Annu Rev Microbiol; 2017 Sep; 71():281-307. PubMed ID: 28657883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structure of Clostridium difficile toxin A glucosyltransferase domain bound to Mn2+ and UDP provides insights into glucosyltransferase activity and product release.
    D'Urzo N; Malito E; Biancucci M; Bottomley MJ; Maione D; Scarselli M; Martinelli M
    FEBS J; 2012 Sep; 279(17):3085-97. PubMed ID: 22747490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural determinants of Clostridium difficile toxin A glucosyltransferase activity.
    Pruitt RN; Chumbler NM; Rutherford SA; Farrow MA; Friedman DB; Spiller B; Lacy DB
    J Biol Chem; 2012 Mar; 287(11):8013-20. PubMed ID: 22267739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rho-glucosylating Clostridium difficile toxins A and B: new insights into structure and function.
    Jank T; Giesemann T; Aktories K
    Glycobiology; 2007 Apr; 17(4):15R-22R. PubMed ID: 17237138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward a structural understanding of Clostridium difficile toxins A and B.
    Pruitt RN; Lacy DB
    Front Cell Infect Microbiol; 2012; 2():28. PubMed ID: 22919620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of receptor-binding C-terminal repeats from Clostridium difficile toxin A.
    Ho JG; Greco A; Rupnik M; Ng KK
    Proc Natl Acad Sci U S A; 2005 Dec; 102(51):18373-8. PubMed ID: 16344467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural organization of the functional domains of Clostridium difficile toxins A and B.
    Pruitt RN; Chambers MG; Ng KK; Ohi MD; Lacy DB
    Proc Natl Acad Sci U S A; 2010 Jul; 107(30):13467-72. PubMed ID: 20624955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autoproteolytic cleavage mediates cytotoxicity of Clostridium difficile toxin A.
    Kreimeyer I; Euler F; Marckscheffel A; Tatge H; Pich A; Olling A; Schwarz J; Just I; Gerhard R
    Naunyn Schmiedebergs Arch Pharmacol; 2011 Mar; 383(3):253-62. PubMed ID: 21046073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clostridium difficile toxin glucosyltransferase domains in complex with a non-hydrolyzable UDP-glucose analogue.
    Alvin JW; Lacy DB
    J Struct Biol; 2017 Jun; 198(3):203-209. PubMed ID: 28433497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical and Immunological Characterization of Truncated Fragments of the Receptor-Binding Domains of C. difficile Toxin A.
    Huang JH; Shen ZQ; Lien SP; Hsiao KN; Leng CH; Chen CC; Siu LK; Chong PC
    PLoS One; 2015; 10(8):e0135045. PubMed ID: 26271033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of an Essential Region for Translocation of Clostridium difficile Toxin B.
    Chen S; Wang H; Gu H; Sun C; Li S; Feng H; Wang J
    Toxins (Basel); 2016 Aug; 8(8):. PubMed ID: 27537911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Processing of Clostridium difficile toxins.
    Giesemann T; Egerer M; Jank T; Aktories K
    J Med Microbiol; 2008 Jun; 57(Pt 6):690-696. PubMed ID: 18480324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Masking autoprocessing of Clostridium difficile toxin A by the C-terminus combined repetitive oligo peptides.
    Zhang Y; Hamza T; Gao S; Feng H
    Biochem Biophys Res Commun; 2015 Apr; 459(2):259-263. PubMed ID: 25725153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbohydrate recognition by Clostridium difficile toxin A.
    Greco A; Ho JG; Lin SJ; Palcic MM; Rupnik M; Ng KK
    Nat Struct Mol Biol; 2006 May; 13(5):460-1. PubMed ID: 16622409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.