These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 27571919)

  • 1. In Situ and Ex Situ TEM Study of Lithiation Behaviours of Porous Silicon Nanostructures.
    Shen C; Ge M; Luo L; Fang X; Liu Y; Zhang A; Rong J; Wang C; Zhou C
    Sci Rep; 2016 Aug; 6():31334. PubMed ID: 27571919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic origin for the phase transition from amorphous Li(x)Si to crystalline Li15Si4.
    Gu M; Wang Z; Connell JG; Perea DE; Lauhon LJ; Gao F; Wang C
    ACS Nano; 2013 Jul; 7(7):6303-9. PubMed ID: 23795599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lithiation-induced fracture of silicon nanowires observed by in-situ scanning electron microscopy.
    Wei CY; Sun YT; Liu YL; Liu TR; Wen CY
    Nanotechnology; 2020 Sep; 31(36):364001. PubMed ID: 32438349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ TEM of two-phase lithiation of amorphous silicon nanospheres.
    McDowell MT; Lee SW; Harris JT; Korgel BA; Wang C; Nix WD; Cui Y
    Nano Lett; 2013 Feb; 13(2):758-64. PubMed ID: 23323680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Minimized Volume Expansion in Hierarchical Porous Silicon upon Lithiation.
    Dai F; Yi R; Yang H; Zhao Y; Luo L; Gordin ML; Sohn H; Chen S; Wang C; Zhang S; Wang D
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13257-13263. PubMed ID: 30810309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stress effects on the initial lithiation of crystalline silicon nanowires: reactive molecular dynamics simulations using ReaxFF.
    Ostadhossein A; Cubuk ED; Tritsaris GA; Kaxiras E; Zhang S; van Duin AC
    Phys Chem Chem Phys; 2015 Feb; 17(5):3832-40. PubMed ID: 25559797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-limiting lithiation in silicon nanowires.
    Liu XH; Fan F; Yang H; Zhang S; Huang JY; Zhu T
    ACS Nano; 2013 Feb; 7(2):1495-503. PubMed ID: 23272994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/carbon anode for lithium ion batteries.
    Wang CM; Li X; Wang Z; Xu W; Liu J; Gao F; Kovarik L; Zhang JG; Howe J; Burton DJ; Liu Z; Xiao X; Thevuthasan S; Baer DR
    Nano Lett; 2012 Mar; 12(3):1624-32. PubMed ID: 22385150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Situ TEM of Phosphorus-Dopant-Induced Nanopore Formation in Delithiated Silicon Nanowires.
    Zhu J; Guo M; Liu Y; Shi X; Fan F; Gu M; Yang H
    ACS Appl Mater Interfaces; 2019 May; 11(19):17313-17320. PubMed ID: 31002223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beyond Thin Films: Clarifying the Impact of
    Woodard JC; Kalisvaart WP; Sayed SY; Olsen BC; Buriak JM
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38147-38160. PubMed ID: 34362252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel size and surface oxide effects in silicon nanowires as lithium battery anodes.
    McDowell MT; Lee SW; Ryu I; Wu H; Nix WD; Choi JW; Cui Y
    Nano Lett; 2011 Sep; 11(9):4018-25. PubMed ID: 21827158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unraveling the Reaction Mechanisms of SiO Anodes for Li-Ion Batteries by Combining in Situ
    Kitada K; Pecher O; Magusin PCMM; Groh MF; Weatherup RS; Grey CP
    J Am Chem Soc; 2019 May; 141(17):7014-7027. PubMed ID: 30964666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-coating regulated lithiation kinetics and degradation in silicon nanowires for lithium ion battery.
    Luo L; Yang H; Yan P; Travis JJ; Lee Y; Liu N; Piper DM; Lee SH; Zhao P; George SM; Zhang JG; Cui Y; Zhang S; Ban C; Wang CM
    ACS Nano; 2015 May; 9(5):5559-66. PubMed ID: 25893684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon coating may expedite the fracture of carbon-coated silicon core-shell nanoparticles during lithiation.
    Li W; Cao K; Wang H; Liu J; Zhou L; Yao H
    Nanoscale; 2016 Mar; 8(9):5254-9. PubMed ID: 26878967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Size and Shape on Electrochemical Performance of Nano-Silicon-Based Lithium Battery.
    Keller C; Desrues A; Karuppiah S; Martin E; Alper JP; Boismain F; Villevieille C; Herlin-Boime N; Haon C; Chenevier P
    Nanomaterials (Basel); 2021 Jan; 11(2):. PubMed ID: 33504062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Size-dependent fracture of silicon nanoparticles during lithiation.
    Liu XH; Zhong L; Huang S; Mao SX; Zhu T; Huang JY
    ACS Nano; 2012 Feb; 6(2):1522-31. PubMed ID: 22217200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of electrochemical lithiation/delithiation of graphene-encapsulated silicon nanoparticles studied by in-situ TEM.
    Luo L; Wu J; Luo J; Huang J; Dravid VP
    Sci Rep; 2014 Jan; 4():3863. PubMed ID: 24457519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative fracture strength and plasticity measurements of lithiated silicon nanowires by in situ TEM tensile experiments.
    Kushima A; Huang JY; Li J
    ACS Nano; 2012 Nov; 6(11):9425-32. PubMed ID: 23025575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lithium ion battery peformance of silicon nanowires with carbon skin.
    Bogart TD; Oka D; Lu X; Gu M; Wang C; Korgel BA
    ACS Nano; 2014 Jan; 8(1):915-22. PubMed ID: 24313423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anisotropic lithiation onset in silicon nanoparticle anode revealed by in situ graphene liquid cell electron microscopy.
    Yuk JM; Seo HK; Choi JW; Lee JY
    ACS Nano; 2014 Jul; 8(7):7478-85. PubMed ID: 24980889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.